Hydraulic fracturing is accompanied by a change in pore fluid pressure. As a result,this may be conveniently represented as inflated dislocation moving within a semi-infinite medium. Theory is developed to describe th...Hydraulic fracturing is accompanied by a change in pore fluid pressure. As a result,this may be conveniently represented as inflated dislocation moving within a semi-infinite medium. Theory is developed to describe the pore pressures that build up around an inflated volumetric dislocation migrating within a saturated porous-elastic semi-infinite medium as analog to hydraulic fracturing emplacement. The solution is capable of evaluating the system behavior of both constant fluid pressure and zero flux surface conditions through application of a superposition. Characterization of horizontal moving dislocation processes is conducted as an application of these techniques. Where the mechanical and hydraulic parameters are defined,a priori,type curve matching of responses may be used to evaluate emplacement location uniquely. Pore pressure response elicited at a dilation,subject to pressure control is of interest in representing hydraulic fracturing where leak-off is an important component. The effect of hydraulic fracturing on fracture fluid pressure is evaluated in a poroelastic hydraulic fracture model utilizing dislocation theory. A minimum set of dimensionless parameters are defined that describe the system. Pore fluid pressures recorded during hydraulic fracturing of a well in the San Joaquin Valley of Central California is examined using the proposed model. The estimated geometry of the hydraulic fracture is matched with reasonable fidelity with the measured data.展开更多
To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Bro...To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Brown failure criterion. The work rate of pore water pressure,which was regarded as an external rate of work,was taken into account in the framework of limit analysis. Taking advantages of variational calculation,the objective function with respect to detaching curve was optimized to obtain the effective shape of collapsing block for square tunnel. According to the numerical results,it is found that the varying pore water pressure coefficient only affects the height and width of the collapsing block,whereas the shape of collapsing block remains unchanged.展开更多
The nonlinear Hoek-Brown failure criterion was introduced to limit analysis by applying the tangent method. Based on the failure mechanism of double-logarithmic spiral curves on the face of deep rock tunnels, the anal...The nonlinear Hoek-Brown failure criterion was introduced to limit analysis by applying the tangent method. Based on the failure mechanism of double-logarithmic spiral curves on the face of deep rock tunnels, the analytical solutions of collapse pressure were derived through utilizing the virtual power principle in the case of pore water, and the optimal solutions of collapse pressure were obtained by using the optimization programs of mathematical model with regard of a maximum problem. In comparison with existing research with the same parameters, the consistency of change rule shows the validity of the proposed method. Moreover, parametric study indicates that nonlinear Hoek-Brown failure criterion and pore water pressure have great influence on collapse pressure and failure shape of tunnel faces in deep rock masses, particularly when the surrounding rock is too weak or under the condition of great disturbance and abundant ground water, and in this case, supporting measures should be intensified so as to prevent the occurrence of collapse.展开更多
Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,n...Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.展开更多
On the basis of upper bound theorem, non-associated flow rule and non-linear failure criterion were considered together.The modified shear strength parameters of materials were obtained with the help of the tangent me...On the basis of upper bound theorem, non-associated flow rule and non-linear failure criterion were considered together.The modified shear strength parameters of materials were obtained with the help of the tangent method. Employing the virtual power principle and strength reduction technique, the effects of dilatancy of materials, non-linear failure criterion, pore water pressure,surface loads and buried depth, on the stability of shallow tunnel were studied. In order to validate the effectiveness of the proposed approach, the solutions in the present work agree well with the existing results when the non-associated flow rule is reduced to the associated flow rule and the non-linear failure criterion is degenerated to the linear failure criterion. Compared with dilatancy of materials, the non-linear failure criterion exerts greater impact on the stability of shallow tunnels. The safety factor of shallow tunnels decreases and the failure surface expands outward when the dilatancy coefficient decreases. While the increase of nonlinear coefficient, the pore water pressure coefficient, the surface load and the buried depth results in the small safety factor. Therefore, the dilatancy as well as non-linear failure criterion should be taken into account in the design of shallow tunnel supporting structure. The supporting structure must be reinforced promptly to prevent potential mud from gushing or collapse accident in the areas with abundant pore water, large surface load or buried depth.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
Drilling crews of Sinopec have encountered a series of troubles when drilling a formation called kazhdumi of Yadavaran oilfield, Iran in the last few years. The formation is buried in the depth from 3300m to 3500m, ma...Drilling crews of Sinopec have encountered a series of troubles when drilling a formation called kazhdumi of Yadavaran oilfield, Iran in the last few years. The formation is buried in the depth from 3300m to 3500m, mainly including limestone, muddy limestone and some bituminous shale. Many microfissures exist in the formation and the equivalent density of formation pore pressure ranged from 1.19g/cm3 to 1.59g/cm3. Asphalt or heavy oil kicks occurred in drilling three wells in one and a half years, which contaminated the drilling fluid and made well killing difficult due to the kicks and lost circulation in open hole. Gas and hydrogen sulfide (the concentration is up to 40000ppm) were present in the wells, and finally two wells were completely abandoned and one partially losL which frustrated the drilling engineering seriously. By analyzing the data of &e drilled wells, the paper summarized the causes of the troubles, and put forward suggestions and conclusions that can serve as reference and guideline for drilling well in &is area in the future.展开更多
基金Projects PRF-25922-AC2 supported by the American Chemical SocietyMSS-9218547 by the US National Science Foundation
文摘Hydraulic fracturing is accompanied by a change in pore fluid pressure. As a result,this may be conveniently represented as inflated dislocation moving within a semi-infinite medium. Theory is developed to describe the pore pressures that build up around an inflated volumetric dislocation migrating within a saturated porous-elastic semi-infinite medium as analog to hydraulic fracturing emplacement. The solution is capable of evaluating the system behavior of both constant fluid pressure and zero flux surface conditions through application of a superposition. Characterization of horizontal moving dislocation processes is conducted as an application of these techniques. Where the mechanical and hydraulic parameters are defined,a priori,type curve matching of responses may be used to evaluate emplacement location uniquely. Pore pressure response elicited at a dilation,subject to pressure control is of interest in representing hydraulic fracturing where leak-off is an important component. The effect of hydraulic fracturing on fracture fluid pressure is evaluated in a poroelastic hydraulic fracture model utilizing dislocation theory. A minimum set of dimensionless parameters are defined that describe the system. Pore fluid pressures recorded during hydraulic fracturing of a well in the San Joaquin Valley of Central California is examined using the proposed model. The estimated geometry of the hydraulic fracture is matched with reasonable fidelity with the measured data.
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation, ChinaProject(CX2009B043) supported by Hunan Provincial Postgraduate Innovation Program, China
文摘To investigate the effective shape of collapsing block in square tunnel subjected to pore water pressure,the analytical solution of detaching curve was derived using upper bound theorem of limit analysis with Hoek-Brown failure criterion. The work rate of pore water pressure,which was regarded as an external rate of work,was taken into account in the framework of limit analysis. Taking advantages of variational calculation,the objective function with respect to detaching curve was optimized to obtain the effective shape of collapsing block for square tunnel. According to the numerical results,it is found that the varying pore water pressure coefficient only affects the height and width of the collapsing block,whereas the shape of collapsing block remains unchanged.
基金Project(2013CB036004)supported by National Basic Research Program of ChinaProjects(51178468,51378510)supported by National Natural Science Foundation of ChinaProject(CX2013B077)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The nonlinear Hoek-Brown failure criterion was introduced to limit analysis by applying the tangent method. Based on the failure mechanism of double-logarithmic spiral curves on the face of deep rock tunnels, the analytical solutions of collapse pressure were derived through utilizing the virtual power principle in the case of pore water, and the optimal solutions of collapse pressure were obtained by using the optimization programs of mathematical model with regard of a maximum problem. In comparison with existing research with the same parameters, the consistency of change rule shows the validity of the proposed method. Moreover, parametric study indicates that nonlinear Hoek-Brown failure criterion and pore water pressure have great influence on collapse pressure and failure shape of tunnel faces in deep rock masses, particularly when the surrounding rock is too weak or under the condition of great disturbance and abundant ground water, and in this case, supporting measures should be intensified so as to prevent the occurrence of collapse.
基金Project(2011J01308) supported by the Natural Science Foundation of Fujian Province,China
文摘Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.
基金Project(2013CB036004) supported by the National Basic Research Program of ChinaProjects(51178468,51378510) supported by the National Natural Science Foundation of ChinaProject(CX2013B077) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘On the basis of upper bound theorem, non-associated flow rule and non-linear failure criterion were considered together.The modified shear strength parameters of materials were obtained with the help of the tangent method. Employing the virtual power principle and strength reduction technique, the effects of dilatancy of materials, non-linear failure criterion, pore water pressure,surface loads and buried depth, on the stability of shallow tunnel were studied. In order to validate the effectiveness of the proposed approach, the solutions in the present work agree well with the existing results when the non-associated flow rule is reduced to the associated flow rule and the non-linear failure criterion is degenerated to the linear failure criterion. Compared with dilatancy of materials, the non-linear failure criterion exerts greater impact on the stability of shallow tunnels. The safety factor of shallow tunnels decreases and the failure surface expands outward when the dilatancy coefficient decreases. While the increase of nonlinear coefficient, the pore water pressure coefficient, the surface load and the buried depth results in the small safety factor. Therefore, the dilatancy as well as non-linear failure criterion should be taken into account in the design of shallow tunnel supporting structure. The supporting structure must be reinforced promptly to prevent potential mud from gushing or collapse accident in the areas with abundant pore water, large surface load or buried depth.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
文摘Drilling crews of Sinopec have encountered a series of troubles when drilling a formation called kazhdumi of Yadavaran oilfield, Iran in the last few years. The formation is buried in the depth from 3300m to 3500m, mainly including limestone, muddy limestone and some bituminous shale. Many microfissures exist in the formation and the equivalent density of formation pore pressure ranged from 1.19g/cm3 to 1.59g/cm3. Asphalt or heavy oil kicks occurred in drilling three wells in one and a half years, which contaminated the drilling fluid and made well killing difficult due to the kicks and lost circulation in open hole. Gas and hydrogen sulfide (the concentration is up to 40000ppm) were present in the wells, and finally two wells were completely abandoned and one partially losL which frustrated the drilling engineering seriously. By analyzing the data of &e drilled wells, the paper summarized the causes of the troubles, and put forward suggestions and conclusions that can serve as reference and guideline for drilling well in &is area in the future.