To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nin...To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nine points by the borehole stress-relief method. The results of strain?confining pressure curves show that rock masses at the three measuring sites exhibit comprehensive linear elasticity in spite of various fissures or cracks within rocks. Horizontal and vertical stress components distribute discrepantly near the fault areas, and the maximum lateral pressure coefficient is as high as 6.15. The maximum principle stress ranges from 8.01 to 14.93 MPa, and stress directions are in the range of N78.07°W?N17.55°W. Geostresses near fault areas are dominated by the horizontal tectonic stresses, while the lower values, compared to those under similar geological conditions are due to stress release by the fault. Additionally, the fault and shear stress nearby are partially responsible for asymmetric elongation and southwesterly migration of orebodies.展开更多
There are no reports regarding perforation of the colorectum induced by anorectal manometry. We report two cases of colorectal perforation that occurred during manometry in the patients undergoing restorative proctect...There are no reports regarding perforation of the colorectum induced by anorectal manometry. We report two cases of colorectal perforation that occurred during manometry in the patients undergoing restorative proctectomy for distal rectal cancer. In the first patient, computed tomography showed an extraperitoneal perforation in the pelvic cavity and a rupture of the rectal wall. A localized perforation into the retroperitoneum was managed conservatively. In the second patient, a 3 cm linear colon rupture was detected above the anastomotic site. A primary closure of the perforated colon and proximal ileostomy were conducted, but the patient died 2 wk later. We hypothesize that the perforation induced by anorectal manometry may be associated with the relative weakening of the proximal bowel wall due to anastomosis, decreased compliance, and abnormal rectal sensation. We suggest that measurement of the maximum tolerable volume should not be routinely performed alter restorative proctectomy for distal rectal cancer.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for por...The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.展开更多
Porous sol-gel glass of CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by adding stearic acid as pore former when the sintering was carried out at 700 ℃ for 3h.The sol-gel porous glass shows an...Porous sol-gel glass of CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by adding stearic acid as pore former when the sintering was carried out at 700 ℃ for 3h.The sol-gel porous glass shows an amorphous structure. The diameter of the pore created by pore former varies from 100 to 300 μm, and macroporous glass has a narrow and small pore size distribution in mesoporous scale. The porosity and pore size of macroporous bioactive glass can be controlled.展开更多
Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet...Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet that breaks the coal and slots the coal seam during the process of retreat drilling achieves pressure relief and permeability increase.Improved efficiency of gas extraction from a field test,high gas coal seam was observed.Investigating the theory of pressure relief and permeability increase required analyzing the characteristics of the double power slotting process and the effects of coal pressure relief and permeability increase.The influence of confining pressure on coal physical properties was examined by using FLAC3D software code to simulate changes of coal stress within the tool destruction area.The double power joint drilling method was modeled.Field experiments were performed and the effects are analyzed.This research shows that there is an ''islanding effect'' in front of the joint double power drill and slotting equipment.The failure strength of the coal seam is substantially reduced within the tool destruction area.Drilling depths are increased by 72% and the diameter of the borehole is increased by 30%.The amount of powdered coal extracted from the drill head increases by 17 times when using the new method.A 30 day total flow measurement from the double power drilled and slotted bores showed that gas extraction increased by 1.3 times compared to the standard drilled bores.Gas concentrations increased from 30% to 60% and were more stable so the overall extraction efficiency increased by a factor of two times.展开更多
Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,n...Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.展开更多
基金Projects(50934002,51104011)supported by the National Natural Science Foundation of ChinaProject(2012BAB08B02)supported by the National Key Technologies R&D Program during the 12th Five-year Plan of China
文摘To minimize negative effects of geostress distribution on mining safety near the fault areas, the UPM40 triaxial geostress testing system was introduced to conduct in-situ geostress measurements at three sites and nine points by the borehole stress-relief method. The results of strain?confining pressure curves show that rock masses at the three measuring sites exhibit comprehensive linear elasticity in spite of various fissures or cracks within rocks. Horizontal and vertical stress components distribute discrepantly near the fault areas, and the maximum lateral pressure coefficient is as high as 6.15. The maximum principle stress ranges from 8.01 to 14.93 MPa, and stress directions are in the range of N78.07°W?N17.55°W. Geostresses near fault areas are dominated by the horizontal tectonic stresses, while the lower values, compared to those under similar geological conditions are due to stress release by the fault. Additionally, the fault and shear stress nearby are partially responsible for asymmetric elongation and southwesterly migration of orebodies.
文摘There are no reports regarding perforation of the colorectum induced by anorectal manometry. We report two cases of colorectal perforation that occurred during manometry in the patients undergoing restorative proctectomy for distal rectal cancer. In the first patient, computed tomography showed an extraperitoneal perforation in the pelvic cavity and a rupture of the rectal wall. A localized perforation into the retroperitoneum was managed conservatively. In the second patient, a 3 cm linear colon rupture was detected above the anastomotic site. A primary closure of the perforated colon and proximal ileostomy were conducted, but the patient died 2 wk later. We hypothesize that the perforation induced by anorectal manometry may be associated with the relative weakening of the proximal bowel wall due to anastomosis, decreased compliance, and abnormal rectal sensation. We suggest that measurement of the maximum tolerable volume should not be routinely performed alter restorative proctectomy for distal rectal cancer.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
文摘The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.
基金Project(50174059) supported by the National Natural Science Foundation of China
文摘Porous sol-gel glass of CaO-SiO2-P2O5 system with macropores larger than 100 μm was prepared by adding stearic acid as pore former when the sintering was carried out at 700 ℃ for 3h.The sol-gel porous glass shows an amorphous structure. The diameter of the pore created by pore former varies from 100 to 300 μm, and macroporous glass has a narrow and small pore size distribution in mesoporous scale. The porosity and pore size of macroporous bioactive glass can be controlled.
基金supports provided by the National Key Basic Research and Development Program of China (No. 2011CB201205)the National Natural Science Foundation of China (No. 51074161)the Independent research of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining & Technology (No. SKLCRSM08X03)
文摘Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet that breaks the coal and slots the coal seam during the process of retreat drilling achieves pressure relief and permeability increase.Improved efficiency of gas extraction from a field test,high gas coal seam was observed.Investigating the theory of pressure relief and permeability increase required analyzing the characteristics of the double power slotting process and the effects of coal pressure relief and permeability increase.The influence of confining pressure on coal physical properties was examined by using FLAC3D software code to simulate changes of coal stress within the tool destruction area.The double power joint drilling method was modeled.Field experiments were performed and the effects are analyzed.This research shows that there is an ''islanding effect'' in front of the joint double power drill and slotting equipment.The failure strength of the coal seam is substantially reduced within the tool destruction area.Drilling depths are increased by 72% and the diameter of the borehole is increased by 30%.The amount of powdered coal extracted from the drill head increases by 17 times when using the new method.A 30 day total flow measurement from the double power drilled and slotted bores showed that gas extraction increased by 1.3 times compared to the standard drilled bores.Gas concentrations increased from 30% to 60% and were more stable so the overall extraction efficiency increased by a factor of two times.
基金Project(2011J01308) supported by the Natural Science Foundation of Fujian Province,China
文摘Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.