An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bod...An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bodies. The bit is considered to be an absolutely rigid spherical or ellipsoidal body, the well bottom surface can be plane or spherical. It is assumed that the system coaxiality is disturbed through small initial curvature of the drill string, imperfections of the bit and bore-well geometry or the system mass debalance. Linearized equations of the bit whirling are deducted, the frequencies of periodic motions are calculated, and their modes are constructed for different geometric parameters of the spherical and ellipsoidal bits. It is demonstrated that, depending on the system properties, the bit motion can acquire the regimes of forward and backward whMings or to transit to the state of stationary spinning relative to an immovable center of velocities. The most unfavorable and atypical whirling modes are characteristic for oblate eilipsoidal bits and curvilinear surfaces of the well bottom.展开更多
Dynamical properties of liquid in nano-channels attract much interest because of their applications in engineering and biological systems. The transfer behavior of liquid confined within nanopores differs significantl...Dynamical properties of liquid in nano-channels attract much interest because of their applications in engineering and biological systems. The transfer behavior of liquid confined within nanopores differs significantly from that in the bulk. Based on the simple quasicrystal model of liquid, analytical expressions of self-diffusion coefficient both in bulk and in slit nanopore are derived from the Stokes–Einstein equation and the modified Eyring's equation for viscosity. The local self-diffusion coefficient in different layers of liquid and the global self-diffusion coefficient in the slit nanopore are deduced from these expressions. The influences of confinement by pore walls,pore widths, liquid density, and temperature on the self-diffusion coefficient are investigated. The results indicate that the self-diffusion coefficient in nanopore increases with the pore width and approaches the bulk value as the pore width is sufficiently large. Similar to that in bulk state, the self-diffusion coefficient in nanopore decreases with the increase of density and the decrease of temperature, but these dependences are weaker than that in bulk state and become even weaker as the pore width decreases. This work provides a simple method to capture the physical behavior and to investigate the dynamic properties of liquid in nanopores.展开更多
Novel highly nonlinear photonic crystal fibers(HN-PCFs) with flattened dispersion are proposed by omitting 19 air holes as the fiber core.The simulation results show that the high nonlinearity and the flattened disper...Novel highly nonlinear photonic crystal fibers(HN-PCFs) with flattened dispersion are proposed by omitting 19 air holes as the fiber core.The simulation results show that the high nonlinearity and the flattened dispersion can be achieved simultaneously by employing only two types of air holes in the cladding.To reduce the confinement loss,the modified designs are presented.The confinement loss is below 0.1 dB/km at 1.55 μm,when seven layers of air-hole rings are introduced to the cladding.After modifying,the dispersion can change from-0.5 ps/(nm.km) to+0.5 ps/(nm.km) in the range from 1.35 μm to 2.06 μm,and the effective mode area is as low as 2.27 μm 2 at 1.55 μm.展开更多
文摘An incipient stage of a rotating drill string bit whirl motion proceeding on a well bottom surface is studied on the basis of kinematic (nonholonomic) models of mechanic interaction between the contacting uneven bodies. The bit is considered to be an absolutely rigid spherical or ellipsoidal body, the well bottom surface can be plane or spherical. It is assumed that the system coaxiality is disturbed through small initial curvature of the drill string, imperfections of the bit and bore-well geometry or the system mass debalance. Linearized equations of the bit whirling are deducted, the frequencies of periodic motions are calculated, and their modes are constructed for different geometric parameters of the spherical and ellipsoidal bits. It is demonstrated that, depending on the system properties, the bit motion can acquire the regimes of forward and backward whMings or to transit to the state of stationary spinning relative to an immovable center of velocities. The most unfavorable and atypical whirling modes are characteristic for oblate eilipsoidal bits and curvilinear surfaces of the well bottom.
基金Supported by Guangdong Science and Technology Project(2012B050600012)
文摘Dynamical properties of liquid in nano-channels attract much interest because of their applications in engineering and biological systems. The transfer behavior of liquid confined within nanopores differs significantly from that in the bulk. Based on the simple quasicrystal model of liquid, analytical expressions of self-diffusion coefficient both in bulk and in slit nanopore are derived from the Stokes–Einstein equation and the modified Eyring's equation for viscosity. The local self-diffusion coefficient in different layers of liquid and the global self-diffusion coefficient in the slit nanopore are deduced from these expressions. The influences of confinement by pore walls,pore widths, liquid density, and temperature on the self-diffusion coefficient are investigated. The results indicate that the self-diffusion coefficient in nanopore increases with the pore width and approaches the bulk value as the pore width is sufficiently large. Similar to that in bulk state, the self-diffusion coefficient in nanopore decreases with the increase of density and the decrease of temperature, but these dependences are weaker than that in bulk state and become even weaker as the pore width decreases. This work provides a simple method to capture the physical behavior and to investigate the dynamic properties of liquid in nanopores.
基金supported by the National Basic Research Program of China (No.2010CB327604)the Jiangsu Meteorological Observation and Information Processing Key Laboratory Open Subject (No.KDXS1107)+2 种基金the College Science Research Program of Hebei Province (No.Z2010336)the Science and Technology Supporting Projects of Qinhuangdao (No.201101A093)the Doctorate Foundation of Yanshan University
文摘Novel highly nonlinear photonic crystal fibers(HN-PCFs) with flattened dispersion are proposed by omitting 19 air holes as the fiber core.The simulation results show that the high nonlinearity and the flattened dispersion can be achieved simultaneously by employing only two types of air holes in the cladding.To reduce the confinement loss,the modified designs are presented.The confinement loss is below 0.1 dB/km at 1.55 μm,when seven layers of air-hole rings are introduced to the cladding.After modifying,the dispersion can change from-0.5 ps/(nm.km) to+0.5 ps/(nm.km) in the range from 1.35 μm to 2.06 μm,and the effective mode area is as low as 2.27 μm 2 at 1.55 μm.