In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o...In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.展开更多
The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,re...The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,respectively.Planar particle image velocimetry(PIV) was applied to measure the velocity field at the same Reynolds number of Re=50,000,where Re = UeDe /with Ue being the exit bulk velocity and the kinematic viscosity of fluid,D e the equivalent diameters.The instantaneous velocity,mean velocity,Reynolds stresses were obtained.From the mean velocity field,the centreline velocity decay rate and half-velocity width were derived.Comparing the mixing characteristics of the two jets,it is found that the triangular jet has a faster mixing rate than the circular counterpart.The triangular jet entrainments with the ambient fluid at a higher rate in the near field.This is evidenced by a shorter unmixed core,faster Reynolds stress and centreline turbulence intensity growth.The primary coherent structures in the near field are found to break down more rapidly in the triangular jet as compared to the circular jet.Over the entire measurement region,the triangular jet maintained a higher rate of decay and spread.Moreover,all components of Reynolds stress of the triangular jet appear to reach their peaks earlier,and then decay more rapidly than those of the circular jet.In addition,the axis-switching phenomenon is observed in the triangular jet.展开更多
基金Supported by the University Doctorate Special Research Fund (No. 20030614001) and the Youth Scholarship Leader Fund of Univ. of Electro. Sci. and Tech. of China.
文摘In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.
基金the support of the Fundamental Research Funds for the Central Universities (Grant No. 3132013029)the National Natural Science Foundation of China (Grant Nos. 10921202 and11072005)
文摘The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,respectively.Planar particle image velocimetry(PIV) was applied to measure the velocity field at the same Reynolds number of Re=50,000,where Re = UeDe /with Ue being the exit bulk velocity and the kinematic viscosity of fluid,D e the equivalent diameters.The instantaneous velocity,mean velocity,Reynolds stresses were obtained.From the mean velocity field,the centreline velocity decay rate and half-velocity width were derived.Comparing the mixing characteristics of the two jets,it is found that the triangular jet has a faster mixing rate than the circular counterpart.The triangular jet entrainments with the ambient fluid at a higher rate in the near field.This is evidenced by a shorter unmixed core,faster Reynolds stress and centreline turbulence intensity growth.The primary coherent structures in the near field are found to break down more rapidly in the triangular jet as compared to the circular jet.Over the entire measurement region,the triangular jet maintained a higher rate of decay and spread.Moreover,all components of Reynolds stress of the triangular jet appear to reach their peaks earlier,and then decay more rapidly than those of the circular jet.In addition,the axis-switching phenomenon is observed in the triangular jet.