In this paper we have investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular...In this paper we have investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green's integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cure-collocation method where the behaviour of the potential functions at the tips of the plates have been used. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.展开更多
A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating...A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating a reference perforated plate about its origin point according to the parabolic equation y=-x2 A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.展开更多
Strong, normal shock wave, terminating a local supersonic area on an airfoil, not only limits aerodynamic performance but also becomes a source of a high-speed impulsive helicopter noise. The application of a passive ...Strong, normal shock wave, terminating a local supersonic area on an airfoil, not only limits aerodynamic performance but also becomes a source of a high-speed impulsive helicopter noise. The application of a passive control system (a cavity covered by a perforated plate) on a rotor blade should reduce the noise created by a moving shock. This article covers the numerical implementation of the Bohning/Doerffer transpiration law into the SPARC code and includes an extended validation against the experimental data for relatively simple geometries of transonic nozzles. It is a first step towards a full simulation of a helicopter rotor equipped with a noise reducing passive control device in hover and in forward flight conditions.展开更多
基金Partially Supported by the Department of Science and Technology Through a Research Grant to RG(No.SR/FTP/MS-020/2010)
文摘In this paper we have investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green's integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cure-collocation method where the behaviour of the potential functions at the tips of the plates have been used. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.
文摘A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating a reference perforated plate about its origin point according to the parabolic equation y=-x2 A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.
文摘Strong, normal shock wave, terminating a local supersonic area on an airfoil, not only limits aerodynamic performance but also becomes a source of a high-speed impulsive helicopter noise. The application of a passive control system (a cavity covered by a perforated plate) on a rotor blade should reduce the noise created by a moving shock. This article covers the numerical implementation of the Bohning/Doerffer transpiration law into the SPARC code and includes an extended validation against the experimental data for relatively simple geometries of transonic nozzles. It is a first step towards a full simulation of a helicopter rotor equipped with a noise reducing passive control device in hover and in forward flight conditions.