Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It h...Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.展开更多
基金supported by the National Natural Science Foundation of China (21701043, 21573066, and 51402100)the Provincial Natural Science Foundation of Hunan (2016JJ1006 and 2016TP1009)the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province and Shenzhen Science and Technology Program (JCYJ20170306141659388)
文摘Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.