Curvatures are important geometric attributes of surfaces. There are many applications that require as a first step the accurate estimation of curvatures at arbitrary vertices on a triangulated surface. Chen and Schmi...Curvatures are important geometric attributes of surfaces. There are many applications that require as a first step the accurate estimation of curvatures at arbitrary vertices on a triangulated surface. Chen and Schmitt (1992) and Taubin (1995) presented two simple methods to estimate principal curvatures. They used circular arcs to approximate the normal curvature. We find this may cause large error in some cases. In this paper, we describe a more accurate method to estimate the normal curvature, and present a novel algorithm to estimate principal curvatures by simplifying the Chen and Schmitt’s method. Some comparison results are also shown in this paper.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10371110) and the National Basic Research Program (973)of China (No. 2004CB318000)
文摘Curvatures are important geometric attributes of surfaces. There are many applications that require as a first step the accurate estimation of curvatures at arbitrary vertices on a triangulated surface. Chen and Schmitt (1992) and Taubin (1995) presented two simple methods to estimate principal curvatures. They used circular arcs to approximate the normal curvature. We find this may cause large error in some cases. In this paper, we describe a more accurate method to estimate the normal curvature, and present a novel algorithm to estimate principal curvatures by simplifying the Chen and Schmitt’s method. Some comparison results are also shown in this paper.