Two types of tube bundles are designed,which are,respectively,composed of six tubes arranged in the boiling chamber.The nucleate pool boiling performance of smooth tube bundles and sintered porous surface tube bundles...Two types of tube bundles are designed,which are,respectively,composed of six tubes arranged in the boiling chamber.The nucleate pool boiling performance of smooth tube bundles and sintered porous surface tube bundles with deionized water as a medium are experimentally studied at atmospheric and sub-atmospheric pressures,respectively.The experimental results indicate that the boiling heat transfer coefficients of the two types of tube bundles increase with the increase in pressure under vacuum conditions as they behave under ordinary pressure.As the pressure varies from 10 to 100 kPa,it also can be seen that the heat transfer coefficient of the sintered porous surface tube is increased by 0.2 to 4 times compared with the smooth one under the same operating parameters.In addition,the experimental data show that a definite bundle effect exists in both sintered porous surface tubes and smooth tubes under vacuum conditions.展开更多
Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer con...Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball's model replaced relative humidity with VPD s (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO 2 concentration between leaf and ambient air are considered, VPD s , the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO 2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO 2, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.展开更多
One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moistu...One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%, 61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smallest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.展开更多
[Objective] The aim was to explore the gases exchange characteristic in leaves of soybean cultivars at different yield levels to provide a certain theories basis for high yield breeding and cultivation of soybean cult...[Objective] The aim was to explore the gases exchange characteristic in leaves of soybean cultivars at different yield levels to provide a certain theories basis for high yield breeding and cultivation of soybean cultivars. [Method] Nine soybean cultivars divided into three yield levels were planted under the same environmental condition. At V4(seedling),R2(blooming),R4(pod-bearing),R6(pod-filling) and R7(maturing) growth stages,the net photosynthetic rate (Pn),stomatal conductance (Gs) and transpiration rate (Tr) in soybean leaves were measured with Li-6400 portable photosynthesis system. [Result] At all growth stages,the net photosynthetic rate,stomatal conductance in leaves of high yield soybean cultivars were significantly higher than low yield soybean cultivars. At V4,R2 and R4 stages,transpiration rate in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars; there was no significant difference on transpiration rate in leaves of soybean cultivars at different yield levels at R6 and R7 stage. At V4 and R2 stage,water use efficiency (WUE) in leaves of soybean cultivars at different yield showed a trend of low yield cultivarsmiddle yield cultivarshigh yield cultivars,while it appeared high yield cultivarsmiddle yield cultivarslow yield cultivars at R4,R6 and R7 stage. [Conclusion] The gases exchange capacity in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars,which had provided physiological basis of high yield. The net photosynthetic rate could be used as an selection index of high yield soybean.展开更多
The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was a...The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The de-crease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic wa-ter-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate. Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.展开更多
The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to dete...The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.展开更多
Enhanced pool boiling heat transfer of the porous structure is critical to the thermal management technology.In this paper,pool boiling heat transfer experiments are performed on copper foam welded surfaces in de-ioni...Enhanced pool boiling heat transfer of the porous structure is critical to the thermal management technology.In this paper,pool boiling heat transfer experiments are performed on copper foam welded surfaces in de-ionized water to investigate the effects of basic parameters of copper foam on heat transfer enhancement.Boiling phenomenon is observed to facilitate the understanding of enhancement mechanism.The results show that copper foam welded surfaces can significantly enhance the pool boiling heat transfer performance,reduce the boiling incipience temperature by 7-9℃,and reach two times heat transfer coefficient compared with smooth plain surfaces due to numerous nucleation sites,extended surface areas,and enhanced turbulent effect.Pore density and thickness of foam have two side effects on heat transfer.展开更多
Enviromnental pollution is serious social concern. The inflow of heavy metals in the ecological food chain and their subsequent bio-magnification in human bodies is cascading its harmful effects. The metabolism of pla...Enviromnental pollution is serious social concern. The inflow of heavy metals in the ecological food chain and their subsequent bio-magnification in human bodies is cascading its harmful effects. The metabolism of plants is being hampered by these heavy metals. In the present studies, effect of heavy metal especially cadmium has been studied on stomatal diffusive resistance (SDR), transpiration rate, leaf surface humidity and leaf temperature of soybean plants growing in hydroponic cultures. Cadmium treatment decelerates the rate of transpiration. The inhibition of transpiration associated with increased SDR leads to dehydration of leaf surface, thereby, increasing temperature of leaves in comparison to control plants. In the present study, temperature difference between stressed and non-stressed plant leaves was as high as 3℃ Moreover, any such rise in leaf temperature due to uptake and induced toxicity of heavy metals can possibly be a good bio-indicator having wide applications in thermal remote sensing and geospatial monitoring of metal polluted soils.展开更多
Experimental investigations of boiling heat transfer from porous suffaces at atmospheric pressure were performed. The porous surfaces are plain tubes covered with metal screens, V-shaped groove tubes covered with sc...Experimental investigations of boiling heat transfer from porous suffaces at atmospheric pressure were performed. The porous surfaces are plain tubes covered with metal screens, V-shaped groove tubes covered with screens, plain tubes sintered with screens, and V-shaped groove tubes sintered with screens.The experimental results show that siatering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer. The boiling hysteresis was observed in the experiment. This paper discusses the mechanism of the boiling heat transfer horn those kinds of porous surfaces stated above.展开更多
基金The National Natural Science Foundation of China(No.50706012)
文摘Two types of tube bundles are designed,which are,respectively,composed of six tubes arranged in the boiling chamber.The nucleate pool boiling performance of smooth tube bundles and sintered porous surface tube bundles with deionized water as a medium are experimentally studied at atmospheric and sub-atmospheric pressures,respectively.The experimental results indicate that the boiling heat transfer coefficients of the two types of tube bundles increase with the increase in pressure under vacuum conditions as they behave under ordinary pressure.As the pressure varies from 10 to 100 kPa,it also can be seen that the heat transfer coefficient of the sintered porous surface tube is increased by 0.2 to 4 times compared with the smooth one under the same operating parameters.In addition,the experimental data show that a definite bundle effect exists in both sintered porous surface tubes and smooth tubes under vacuum conditions.
文摘Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball's model replaced relative humidity with VPD s (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO 2 concentration between leaf and ambient air are considered, VPD s , the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO 2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO 2, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter.
基金This study was supported by Science and Technology Program of Heilongjiang Province (GC01KB213), and the Quick Response of Basic Research Supporting Program (2001CCB00600)
文摘One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%, 61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smallest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.
基金Supported by National Natural Science Foundation of China(30871547)Educational Commission Funded Project in Jilin Province(2006041)~~
文摘[Objective] The aim was to explore the gases exchange characteristic in leaves of soybean cultivars at different yield levels to provide a certain theories basis for high yield breeding and cultivation of soybean cultivars. [Method] Nine soybean cultivars divided into three yield levels were planted under the same environmental condition. At V4(seedling),R2(blooming),R4(pod-bearing),R6(pod-filling) and R7(maturing) growth stages,the net photosynthetic rate (Pn),stomatal conductance (Gs) and transpiration rate (Tr) in soybean leaves were measured with Li-6400 portable photosynthesis system. [Result] At all growth stages,the net photosynthetic rate,stomatal conductance in leaves of high yield soybean cultivars were significantly higher than low yield soybean cultivars. At V4,R2 and R4 stages,transpiration rate in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars; there was no significant difference on transpiration rate in leaves of soybean cultivars at different yield levels at R6 and R7 stage. At V4 and R2 stage,water use efficiency (WUE) in leaves of soybean cultivars at different yield showed a trend of low yield cultivarsmiddle yield cultivarshigh yield cultivars,while it appeared high yield cultivarsmiddle yield cultivarslow yield cultivars at R4,R6 and R7 stage. [Conclusion] The gases exchange capacity in leaves of high yield soybean cultivars was significantly higher than low yield soybean cultivars,which had provided physiological basis of high yield. The net photosynthetic rate could be used as an selection index of high yield soybean.
基金Innovation Research Pro-ject of Chinese Academy of Sciences (KZCX1-10-03), National Natural Sciences Foundation of China (90102003), and West Development Technol-ogy Project (2001BA901A42).
文摘The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The de-crease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic wa-ter-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate. Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.
基金the Guangdong Provincial Scientific and Technological Development Program (2004B10201008)
文摘The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.
基金supported by the National Natural Science Foundation of China(No.52075249)the Foundation of Jiangsu Key Laboratory of Bionic Functional Materials(No.NJ2020026)
文摘Enhanced pool boiling heat transfer of the porous structure is critical to the thermal management technology.In this paper,pool boiling heat transfer experiments are performed on copper foam welded surfaces in de-ionized water to investigate the effects of basic parameters of copper foam on heat transfer enhancement.Boiling phenomenon is observed to facilitate the understanding of enhancement mechanism.The results show that copper foam welded surfaces can significantly enhance the pool boiling heat transfer performance,reduce the boiling incipience temperature by 7-9℃,and reach two times heat transfer coefficient compared with smooth plain surfaces due to numerous nucleation sites,extended surface areas,and enhanced turbulent effect.Pore density and thickness of foam have two side effects on heat transfer.
文摘Enviromnental pollution is serious social concern. The inflow of heavy metals in the ecological food chain and their subsequent bio-magnification in human bodies is cascading its harmful effects. The metabolism of plants is being hampered by these heavy metals. In the present studies, effect of heavy metal especially cadmium has been studied on stomatal diffusive resistance (SDR), transpiration rate, leaf surface humidity and leaf temperature of soybean plants growing in hydroponic cultures. Cadmium treatment decelerates the rate of transpiration. The inhibition of transpiration associated with increased SDR leads to dehydration of leaf surface, thereby, increasing temperature of leaves in comparison to control plants. In the present study, temperature difference between stressed and non-stressed plant leaves was as high as 3℃ Moreover, any such rise in leaf temperature due to uptake and induced toxicity of heavy metals can possibly be a good bio-indicator having wide applications in thermal remote sensing and geospatial monitoring of metal polluted soils.
文摘Experimental investigations of boiling heat transfer from porous suffaces at atmospheric pressure were performed. The porous surfaces are plain tubes covered with metal screens, V-shaped groove tubes covered with screens, plain tubes sintered with screens, and V-shaped groove tubes sintered with screens.The experimental results show that siatering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer. The boiling hysteresis was observed in the experiment. This paper discusses the mechanism of the boiling heat transfer horn those kinds of porous surfaces stated above.