We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks....We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks. The results indicate that there is a good correlation between T2 distribution and the pore radius frequency histogram. The total T2 distribution can be partitioned into pore body and pore throat parts. The effect of parameters including throat radius, pore-throat ratio, and coordination number of the micro- pore structure on the T2 distribution can be evaluated individually. The result indicates that: 1 ) with the increase of the pore throat radius, the T2 distribution moves toward longer relaxation times and its peak intensity increases; 2) with the increase of the pore-throat ratio, the T2 distribution moves towards longer T2 with the peak intensity increasing and the overlap between pore body T2 and pore throat T2 decreasing; 3) With the increase of connectivity, the short T2 component increases and peak signal intensity decreases slightly.展开更多
Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-pe...Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-permeability sandstone rocks from the 4th Member (Es4) of the Shahejie Formation in the south slope of the Dongying Sag. We used the existing pore structure data from petrophysics, core slices, and mercury injection tests to classify the pore structure into three categories and five subcategories. Then, the T2 spectra of samples with different pore structures were interpolated, and the one- and three-dimensional fractal dimensions and the multifractal spectrum were obtained. Parameters a (intensity of singularity) andf(a) (density of distribution) were extracted from the multifractal spectra. The differences in the three fractal dimensions suggest that the pore structure types correlate with a andf(a). The results calculated based on the multifractal spectrum is consistent with that of the core slices and mercury injection. Finally, the proposed method was applied to an actual logging profile to evaluate the pore structure of low-permeability sandstone reservoirs.展开更多
Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure an...Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure and properties of cellulose/AH nanocomposite aerogels were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy,ultraviolet-visible spectrometry, N_2 adsorption, thermogravimetric analysis, and micro-scale combustion calorimetry. The results indicated that the AH nanoparticles were homogeneously distributed within matrix, and the presence of AH nanoparticles did not affect the homogeneous nanoporous structure and morphology of regenerated cellulose aerogels prepared from1-allyl-3-methylimidazolium chloride solution. The resultant nanocomposite aerogels exhibited good transparency and excellent mechanical properties. Moreover, the incorporation of AH was found to significantly decrease the flammability of cellulose aerogels. Therefore, this work provides a facile method to prepare transparent and flame retardant cellulose-based nanocomposite aerogels, which may have great potential in the application of building materials.展开更多
文摘We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks. The results indicate that there is a good correlation between T2 distribution and the pore radius frequency histogram. The total T2 distribution can be partitioned into pore body and pore throat parts. The effect of parameters including throat radius, pore-throat ratio, and coordination number of the micro- pore structure on the T2 distribution can be evaluated individually. The result indicates that: 1 ) with the increase of the pore throat radius, the T2 distribution moves toward longer relaxation times and its peak intensity increases; 2) with the increase of the pore-throat ratio, the T2 distribution moves towards longer T2 with the peak intensity increasing and the overlap between pore body T2 and pore throat T2 decreasing; 3) With the increase of connectivity, the short T2 component increases and peak signal intensity decreases slightly.
基金supported by the National Natural Science Foundation of China(Grant No.41202110)Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)(Grant No.PLN201612)+1 种基金the Applied Basic Research Projects in Sichuan Province(Grant No.2015JY0200)Open Fund Project from Sichuan Key Laboratory of Natural Gas Geology(Grant No.2015trqdz07)
文摘Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-permeability sandstone rocks from the 4th Member (Es4) of the Shahejie Formation in the south slope of the Dongying Sag. We used the existing pore structure data from petrophysics, core slices, and mercury injection tests to classify the pore structure into three categories and five subcategories. Then, the T2 spectra of samples with different pore structures were interpolated, and the one- and three-dimensional fractal dimensions and the multifractal spectrum were obtained. Parameters a (intensity of singularity) andf(a) (density of distribution) were extracted from the multifractal spectra. The differences in the three fractal dimensions suggest that the pore structure types correlate with a andf(a). The results calculated based on the multifractal spectrum is consistent with that of the core slices and mercury injection. Finally, the proposed method was applied to an actual logging profile to evaluate the pore structure of low-permeability sandstone reservoirs.
基金supported by the National Natural Science Foundation of China (51273206, 51425307)
文摘Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide(AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO_2 drying. The structure and properties of cellulose/AH nanocomposite aerogels were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy,ultraviolet-visible spectrometry, N_2 adsorption, thermogravimetric analysis, and micro-scale combustion calorimetry. The results indicated that the AH nanoparticles were homogeneously distributed within matrix, and the presence of AH nanoparticles did not affect the homogeneous nanoporous structure and morphology of regenerated cellulose aerogels prepared from1-allyl-3-methylimidazolium chloride solution. The resultant nanocomposite aerogels exhibited good transparency and excellent mechanical properties. Moreover, the incorporation of AH was found to significantly decrease the flammability of cellulose aerogels. Therefore, this work provides a facile method to prepare transparent and flame retardant cellulose-based nanocomposite aerogels, which may have great potential in the application of building materials.