期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
孔隙度对湿式离合器局部润滑及摩擦特性影响研究 被引量:6
1
作者 赵二辉 马彪 +1 位作者 李和言 马成男 《摩擦学学报》 EI CAS CSCD 北大核心 2017年第3期325-332,共8页
针对湿式离合器局部润滑及摩擦特性的影响因素,建立了摩擦副微观混合润滑模型.考虑了微凸峰接触和局部温升的影响,分析了孔隙度对湿式离合器局部压强分布、油膜和微凸峰承压比、实际接触面积、局部温升的影响.同时,利用摩擦磨损试验机(U... 针对湿式离合器局部润滑及摩擦特性的影响因素,建立了摩擦副微观混合润滑模型.考虑了微凸峰接触和局部温升的影响,分析了孔隙度对湿式离合器局部压强分布、油膜和微凸峰承压比、实际接触面积、局部温升的影响.同时,利用摩擦磨损试验机(UMT)进行小试样销-盘试验,分析了不同孔隙度下离合器摩擦副局部摩擦系数的变化.结果表明:在混合润滑中,随着孔隙度的增大,润滑油膜动压作用减小,局部微凸峰接触压强增大,微凸峰法向压力承载比增大,摩擦副实际接触面积增加,因此摩擦系数增大. 展开更多
关键词 湿式离合器 混合润滑 局部摩擦特性 孔隙度影响
下载PDF
关键成藏期碎屑岩储层古孔隙度恢复方法 被引量:24
2
作者 渠冬芳 姜振学 +1 位作者 刘惠民 高永进 《石油学报》 EI CAS CSCD 北大核心 2012年第3期404-413,共10页
油气的成藏过程是地质历史时期的事件,恢复储层在地质历史时期,尤其是在关键成藏期的孔隙度可以帮助定量恢复成藏期的地质条件,更好地认识油气成藏的过程。笔者以将今论古的地质思想为指导,创建了关键成藏期储层孔隙度的恢复方法。以东... 油气的成藏过程是地质历史时期的事件,恢复储层在地质历史时期,尤其是在关键成藏期的孔隙度可以帮助定量恢复成藏期的地质条件,更好地认识油气成藏的过程。笔者以将今论古的地质思想为指导,创建了关键成藏期储层孔隙度的恢复方法。以东营凹陷沙河街组四段上亚段(简称沙四上亚段)储层为例,在对其成岩作用类型和成岩阶段划分的基础上,分别对处于不同成岩阶段的一定深度下的储层孔隙度影响因素进行分析,提出了孔隙度综合影响因子的新概念;建立了在孔隙度综合影响因子约束下的孔隙度演化曲线;最后利用此孔隙度演化曲线,对东营凹陷草11—王59剖面上的沙四上亚段储层在几个关键成藏期的古孔隙度进行了恢复。结果表明,用该方法进行的古孔隙度恢复取得了较好的效果。 展开更多
关键词 孔隙恢复 关键成藏期 成岩作用 孔隙综合影响因子 东营凹陷
下载PDF
Factors influencing the porosity of gas hydrate bearing sediments 被引量:4
3
作者 HE Jing LIU XueWei +2 位作者 YU Zhen XIE ChengLiang LI ZiWei 《Science China Earth Sciences》 SCIE EI CAS 2013年第4期557-567,共11页
Porosity is a key parameter in calculating the velocity of gas hydrate bearing sediments and quantifying the amount of gas hydrate. The variation of porosity is affected by many factors. The influences of different fa... Porosity is a key parameter in calculating the velocity of gas hydrate bearing sediments and quantifying the amount of gas hydrate. The variation of porosity is affected by many factors. The influences of different factors on porosity are distinct. The purpose of this paper is to analyze the main factors that affect the overall and local change of porosity in marine sediments where gas hydrate was sampled. Porosity logs were collected from ODP Leg 164, Blake Ridge, ODP Leg 204, Hydrate Ridge, and IODP expedition 311, Cascadia Margin. Based on the characteristic of porosity variation in depth, porosity was divided into three components: low frequency component, middle frequency component, and high frequency component. The factors influencing each component were discussed. From the analysis, we observed that the porosity of unconsolidated sediment was very high, and the decreasing trend of low frequency component versus depth was affected by compaction. In addition, the initial porosity and slope of low frequency component variation were affected by the content of fine grain and geothermal gradient respectively. The middle component could reflect the variation of lithology, which was affected by the content variation of different sized grains and gas hydrate. The high frequency component was affected by the frequent change of grain size. The existence of volcanic ash-rich sand caused a high value to the high frequency component. The results are applicable to porosity evaluation in gas hydrate bearing sediments. 展开更多
关键词 POROSITY gas hydrate three components of porosity unconsolidated sediment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部