Homogeneity and heterogeneity are two totally different concepts in nature.At the particle length scale,rocks exhibit strong heterogeneity in their constituents and porosities.When the heterogeneity of porosity obeys ...Homogeneity and heterogeneity are two totally different concepts in nature.At the particle length scale,rocks exhibit strong heterogeneity in their constituents and porosities.When the heterogeneity of porosity obeys the random uniform distribution,both the mean value and the variance of porosities in the heterogeneous porosity field can be used to reflect the overall heterogeneous characteristics of the porosity field.The main purpose of this work is to investigate the effects of porosity heterogeneity on chemical dissolution front instability in fluid-saturated rocks by the computational simulation method.The related computational simulation results have demonstrated that:1) since the propagation speed of a chemical dissolution front is inversely proportional to the difference between the final porosity and the mean value of porosities in the initial porosity field,an increase in the extent of the porosity heterogeneity can cause an increase in the mean value of porosities in the initial porosity field and an increase in the propagation speed of the chemical dissolution front.2) An increase in the variance of porosities in the initial porosity field can cause an increase in the instability probability of the chemical dissolution front in the fluid-saturated rock.3) The greater the mean value of porosities in the initial porosity field,the quicker the irregular morphology of the chemical dissolution front changes in the supercritical chemical dissolution systems.This means that the irregular morphology of a chemical dissolution front grows quicker in a porosity field of heterogeneity than it does in that of homogeneity when the chemical dissolution system is at a supercritical stage.展开更多
The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic ba...The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic bacteria cells for hydrogen production. The quartet structure generation set (QSGS) is used to generate porous structure of the immobilized granule. The effects of porosity of the immobilized granule on flow and concentration fields as well as the hydrogen production performance are investi- gated. Higher porosity facilitates the substrate solution smoothly flowing through the porous granule with increasing velocity, and thus results in higher product concentration inside the immobilized gran- ule. Additionally, the substrate consumption efficiency increases, while hydrogen yield slightly decreases with increasing porosity, and they tend to stable for the porosity larger than 0.5. Furthermore, the LB numerical results have a good agreement with the experimental results. It is demonstrated that the pore-scale LB simulation method coupling with QSGS is available to simulate the photo hydrogen produc- tion in the hioreactor with porous immobilized granules.展开更多
The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was e...The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was established to analyze the protection ability and energy absorption by the foam under low velocity impact conditions.For validation,drop hammer experiments were carried out for high porosity closed-cell aluminum foam specimens subjected to low velocity impact loading.The dynamic deformation behavior of the specimen was observed and the velocity attenuation of the drop hammer was measured.The results demonstrated that the aluminum foam had excellent energy absorption capabilities,with its dynamic compressive behavior similar to that obtained under quasi-static loading conditions.Finite element method(FEM) was subsequently employed to obtain stress distributions in the foam specimen.As the propagating period of stress in the specimen was far less than the duration of attenuation,the evolution of the stress was similar to that under quasi-static loading conditions and no obvious stress wave effect was observed,which agreed with the experimental observation.Finally,the predicted velocity attenuation by the ODF-CM was compared with both the experimental measurements and FEM simulation,and good agreements were achieved when the stress distribution was considered to be uniform and the "quasi-static" compressive properties are employed.展开更多
Numerical simulations are carried out for gas-solid fluidized bed of cork particles, using discrete element method. Results exhibit the existence of a so-called anti core-annular porosity profile with lower porosity i...Numerical simulations are carried out for gas-solid fluidized bed of cork particles, using discrete element method. Results exhibit the existence of a so-called anti core-annular porosity profile with lower porosity in the core and higher porosity near the wall for non-slugging fluidization. The tendency to form this unfamiliar anti core-annular porosity profile is stronger when the solid flux is higher. There exist multiple inflection points in the simulated axial solid volume fraction profile for non-slugging fluidization. Results also show that the familiar core-annular porosity profile still appears for slugging fluidization. In addition, the classical choking phenomenon can be captured at the superficial gas velocity slightly lower than the correlated transport velocity.展开更多
基金Project(11272359)supported by the National Natural Science Foundation of China
文摘Homogeneity and heterogeneity are two totally different concepts in nature.At the particle length scale,rocks exhibit strong heterogeneity in their constituents and porosities.When the heterogeneity of porosity obeys the random uniform distribution,both the mean value and the variance of porosities in the heterogeneous porosity field can be used to reflect the overall heterogeneous characteristics of the porosity field.The main purpose of this work is to investigate the effects of porosity heterogeneity on chemical dissolution front instability in fluid-saturated rocks by the computational simulation method.The related computational simulation results have demonstrated that:1) since the propagation speed of a chemical dissolution front is inversely proportional to the difference between the final porosity and the mean value of porosities in the initial porosity field,an increase in the extent of the porosity heterogeneity can cause an increase in the mean value of porosities in the initial porosity field and an increase in the propagation speed of the chemical dissolution front.2) An increase in the variance of porosities in the initial porosity field can cause an increase in the instability probability of the chemical dissolution front in the fluid-saturated rock.3) The greater the mean value of porosities in the initial porosity field,the quicker the irregular morphology of the chemical dissolution front changes in the supercritical chemical dissolution systems.This means that the irregular morphology of a chemical dissolution front grows quicker in a porosity field of heterogeneity than it does in that of homogeneity when the chemical dissolution system is at a supercritical stage.
基金financial support provided by the State Key Program of National Natural Science of China (51136007)National Natural Science Funds for Distinguished Young Scholars (50825602)
文摘The photo bioreaction combined with flow and mass transfer is simulated with pore-scale lattice Boltzmann (LB) method, which is the scenario of a bioreactor filled with a porous granule immobilized photosynthetic bacteria cells for hydrogen production. The quartet structure generation set (QSGS) is used to generate porous structure of the immobilized granule. The effects of porosity of the immobilized granule on flow and concentration fields as well as the hydrogen production performance are investi- gated. Higher porosity facilitates the substrate solution smoothly flowing through the porous granule with increasing velocity, and thus results in higher product concentration inside the immobilized gran- ule. Additionally, the substrate consumption efficiency increases, while hydrogen yield slightly decreases with increasing porosity, and they tend to stable for the porosity larger than 0.5. Furthermore, the LB numerical results have a good agreement with the experimental results. It is demonstrated that the pore-scale LB simulation method coupling with QSGS is available to simulate the photo hydrogen produc- tion in the hioreactor with porous immobilized granules.
基金supported by the National Basic Research Program of China ("973" Project)(Grant No. 2011CB610305)the National "111" Project of China (Grant No. B06024)the National Natural Science Foundation of China (Grant Nos. 10825210,11072188)
文摘The impact of a rigid body(protected structure) together with cushion material(cellular metal foam) on hard ground from a fixed height was investigated.An analytical one-degree-of-freedom colliding model(ODF-CM) was established to analyze the protection ability and energy absorption by the foam under low velocity impact conditions.For validation,drop hammer experiments were carried out for high porosity closed-cell aluminum foam specimens subjected to low velocity impact loading.The dynamic deformation behavior of the specimen was observed and the velocity attenuation of the drop hammer was measured.The results demonstrated that the aluminum foam had excellent energy absorption capabilities,with its dynamic compressive behavior similar to that obtained under quasi-static loading conditions.Finite element method(FEM) was subsequently employed to obtain stress distributions in the foam specimen.As the propagating period of stress in the specimen was far less than the duration of attenuation,the evolution of the stress was similar to that under quasi-static loading conditions and no obvious stress wave effect was observed,which agreed with the experimental observation.Finally,the predicted velocity attenuation by the ODF-CM was compared with both the experimental measurements and FEM simulation,and good agreements were achieved when the stress distribution was considered to be uniform and the "quasi-static" compressive properties are employed.
基金supported by the National Natural Science Foundation of China(10871159)the Presidential Foundation of Gansu Normal University for Nationalities(201301)
文摘Numerical simulations are carried out for gas-solid fluidized bed of cork particles, using discrete element method. Results exhibit the existence of a so-called anti core-annular porosity profile with lower porosity in the core and higher porosity near the wall for non-slugging fluidization. The tendency to form this unfamiliar anti core-annular porosity profile is stronger when the solid flux is higher. There exist multiple inflection points in the simulated axial solid volume fraction profile for non-slugging fluidization. Results also show that the familiar core-annular porosity profile still appears for slugging fluidization. In addition, the classical choking phenomenon can be captured at the superficial gas velocity slightly lower than the correlated transport velocity.