Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerica...Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.展开更多
As the voltage has local characteristics in a power system, system voltage control has depended on human experts in distribution substation local reactive power control station so far in Korea. Since coordinative auto...As the voltage has local characteristics in a power system, system voltage control has depended on human experts in distribution substation local reactive power control station so far in Korea. Since coordinative automatic control has been possible due to the recent advances in computers and communication networks, the hierarchical voltage control system, consisting of primary, secondary, and tertiary control, has been applied in several European countries. Recently the Korea power system has been operated more closely to stability limits because of rapid growth in load-demand as seen in Europe. For this reasons, Korea electric power corporation recognized the need of the voltage control system and developed the voltage control system. This paper presents an intelligent voltage control system for domestic power system using numerical algorithm based on the sensitivity matrix and the expert system. Dynamic characteristics of the developed system are investigated using EMTDC (electromagnetic transient DC analysis program) and RTDS (real time digital simulator). Several case studies showed the promising performance.展开更多
Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound co...Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.展开更多
Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the...Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the second generator by errors in the rotor rotating speed calculation are found,and the tuning method of the speed related parameters are given.The damping and reverse tuning characteristics of power system stabilizers(PSSs)in the digital automatic voltage regulator(AVR)are compared and investigated in the frequency range of 0.18-1.1 Hz.The efficiency of the proposed tuning method for ensuring power system stability is verified by RTDS.Finally,field tests show the validity of the laboratory test results.展开更多
In this paper a fuel cell emulator model suitable for each fuel cell type and power level is proposed. A power interface to the electronic load and a digital section are provided. The fuel cell steady-state, dynamic a...In this paper a fuel cell emulator model suitable for each fuel cell type and power level is proposed. A power interface to the electronic load and a digital section are provided. The fuel cell steady-state, dynamic and thermal behaviour is modeled by the digital controller. The emulator architecture is deeply analyzed and remarks on hardware implementation algorithms are provided for further applications. The system is tested on a 10 W Proton Exchange Membrane (PEM) fuel cell and the high accuracy of the proposed emulator is shown by the comparison between experimental and simulation results.展开更多
文摘Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.
文摘As the voltage has local characteristics in a power system, system voltage control has depended on human experts in distribution substation local reactive power control station so far in Korea. Since coordinative automatic control has been possible due to the recent advances in computers and communication networks, the hierarchical voltage control system, consisting of primary, secondary, and tertiary control, has been applied in several European countries. Recently the Korea power system has been operated more closely to stability limits because of rapid growth in load-demand as seen in Europe. For this reasons, Korea electric power corporation recognized the need of the voltage control system and developed the voltage control system. This paper presents an intelligent voltage control system for domestic power system using numerical algorithm based on the sensitivity matrix and the expert system. Dynamic characteristics of the developed system are investigated using EMTDC (electromagnetic transient DC analysis program) and RTDS (real time digital simulator). Several case studies showed the promising performance.
基金Supported by the National Natural Science Foundation of China(No.51505412)the Independent Study Program for Young Teachers in Yanshan University(No.14LGB004)
文摘Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.
文摘Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the second generator by errors in the rotor rotating speed calculation are found,and the tuning method of the speed related parameters are given.The damping and reverse tuning characteristics of power system stabilizers(PSSs)in the digital automatic voltage regulator(AVR)are compared and investigated in the frequency range of 0.18-1.1 Hz.The efficiency of the proposed tuning method for ensuring power system stability is verified by RTDS.Finally,field tests show the validity of the laboratory test results.
文摘In this paper a fuel cell emulator model suitable for each fuel cell type and power level is proposed. A power interface to the electronic load and a digital section are provided. The fuel cell steady-state, dynamic and thermal behaviour is modeled by the digital controller. The emulator architecture is deeply analyzed and remarks on hardware implementation algorithms are provided for further applications. The system is tested on a 10 W Proton Exchange Membrane (PEM) fuel cell and the high accuracy of the proposed emulator is shown by the comparison between experimental and simulation results.