针对由于地震信号采集环境的复杂性带来的采样信号不完整,存在大量噪声等情况,对采集的叠前地震信号进行去噪和重建。在传统的K-奇异值分解(K-singular value decomposition,K-SVD)建造冗余字典的压缩感知重建的基础上,提出了基于形态...针对由于地震信号采集环境的复杂性带来的采样信号不完整,存在大量噪声等情况,对采集的叠前地震信号进行去噪和重建。在传统的K-奇异值分解(K-singular value decomposition,K-SVD)建造冗余字典的压缩感知重建的基础上,提出了基于形态分量分析(morphometric principal components analysis,MCA)的K-SVD地震信号的去噪与重建。即使用MCA对地震信号的结构和平滑部分进行分类,并针对上述两种类别分别构建由K-SVD算法计算的冗余字典,将两种类别分别置于不同字典中进行去噪与重建。与传统的方法相比,该方法在减少了地震信号采集的成本和难度的基础上,精确辨别地震信号细节,并取得良好的去噪效果。展开更多
文摘针对由于地震信号采集环境的复杂性带来的采样信号不完整,存在大量噪声等情况,对采集的叠前地震信号进行去噪和重建。在传统的K-奇异值分解(K-singular value decomposition,K-SVD)建造冗余字典的压缩感知重建的基础上,提出了基于形态分量分析(morphometric principal components analysis,MCA)的K-SVD地震信号的去噪与重建。即使用MCA对地震信号的结构和平滑部分进行分类,并针对上述两种类别分别构建由K-SVD算法计算的冗余字典,将两种类别分别置于不同字典中进行去噪与重建。与传统的方法相比,该方法在减少了地震信号采集的成本和难度的基础上,精确辨别地震信号细节,并取得良好的去噪效果。