期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于谓词切片的字符串测试数据自动生成 被引量:4
1
作者 赵瑞莲 闵应骅 《计算机研究与发展》 EI CSCD 北大核心 2002年第4期473-481,共9页
字符串谓词使用相当普遍.如何实现字符串测试数据的自动生成是一个有待解决的问题.针对字符串谓词,讨论了路径P\-ath上给定谓词的谓词切片的动态生成算法,以及基于谓词切片的字符串测试数据自动生成方法,并给出了字符串间距... 字符串谓词使用相当普遍.如何实现字符串测试数据的自动生成是一个有待解决的问题.针对字符串谓词,讨论了路径P\-ath上给定谓词的谓词切片的动态生成算法,以及基于谓词切片的字符串测试数据自动生成方法,并给出了字符串间距离的定义.利用程序DUC(Definition_Use_Control)表达式,构造谓词的谓词切片;对任意的输入,通过执行谓词切片,获取谓词中变量的当前值;进而对谓词中变量的每一字符进行分支函数极小化,动态生成给定字符串谓词边界的ON-OFF测试点.实验表明:该方法是行之有效的. 展开更多
关键词 谓词切片 字符测试数据 自动生成 动态生成算法 软件测试 软件开发
下载PDF
显示器中英文字符反应差别实验研究
2
作者 郭赞 史越 +1 位作者 何荣光 王文蔚 《电光与控制》 北大核心 2012年第4期55-58,共4页
以研究飞行器座舱显示器中英文字符的反应差别为目的,采用VB编程在微机上进行了模拟实验。以反应时间和正确率为指标,比较了中文显示与英文显示的差别,以及不同文化程度人员对英文字符的反应差别及汉字字符长短对反应时间的影响,实验结... 以研究飞行器座舱显示器中英文字符的反应差别为目的,采用VB编程在微机上进行了模拟实验。以反应时间和正确率为指标,比较了中文显示与英文显示的差别,以及不同文化程度人员对英文字符的反应差别及汉字字符长短对反应时间的影响,实验结果可为未来显示器字符的设计提供一定参考。 展开更多
关键词 座舱显示器 字符测试 反应时间 正确率 差别
下载PDF
An Effective Long String Searching Algorithm towards Component Security Testing 被引量:2
3
作者 Jinfu Chen Lili Zhu +4 位作者 Zhibin Xie Michael Omari Hilary Ackah-Arthur Saihua Cai Rubing Huang 《China Communications》 SCIE CSCD 2016年第11期153-169,共17页
In the execution of method invocation sequences to test component security,abnormal or normal information is generated and recorded in a monitor log. By searching abnormal information from monitor log,the exceptions t... In the execution of method invocation sequences to test component security,abnormal or normal information is generated and recorded in a monitor log. By searching abnormal information from monitor log,the exceptions that the component has can be determined. To facilitate the searching process,string searching methods could be employed. However,current approaches are not effective enough to search long pattern string. In order to mine the specific information with less number of matches,we proposed an improved Sunday string searching algorithm in this paper. Unlike Sunday algorithm which does not make use of the already matched characters,the proposed approach presents two ideas — utilizing and recycling these characters. We take advantage of all matched characters in main string,if they are still in the matchable interval compared with pattern string,to increase the distance that pattern string moves backwards. Experimental analysis shows that,compared to Sunday algorithm,our method could greatly reduce the matching times,if the scale of character set constituting both main string and pattern string is small,or if the length of pattern string is long. Also,the proposed approach can improve the search effectiveness for abnormal information in component security testing. 展开更多
关键词 component testing security detection monitor log abnormal information string-searching
下载PDF
Offline Handwritten Characters Recognition Using Moments Features and Neural Networks
4
作者 Mohamed Abaynarh Lahbib Zenkouar 《Computer Technology and Application》 2015年第1期19-29,共11页
In this paper we revise the moment theory for pattern recognition designed, to extract patterns from the noisy character datas, and develop unconstrained handwritten. Amazigh character recognition method based upon or... In this paper we revise the moment theory for pattern recognition designed, to extract patterns from the noisy character datas, and develop unconstrained handwritten. Amazigh character recognition method based upon orthogonal moments and neural networks classifier. We argue that, given the natural flexibility of neural network models and the extent of parallel processing that they allow, our algorithm is a step forward in character recognition. More importantly, following the approach proposed, we apply our system to two different databases, to examine the ability to recognize patterns under noise. We discover overwhelming support for different style of writing. Moreover, this basic conclusion appears to remain valid across different levels of smoothing and insensitive to the nuances of character patterns. Experiments tested the effect of set size on recognition accuracy which can reach 97.46%. The novelty of the proposed method is independence of size, slant, orientation, and translation. The performance of the proposed method is experimentally evaluated and the promising results and findings are presented. Our method is compared to K-NN (k-nearest neighbors) classifier algorithm; results show performances of our method. 展开更多
关键词 Neural network character recognition orthogonal moments pattern recognition.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部