The effect of temperature on the life history characteristics of amictic females (AF), unfertilized mictic females (UMF) and fertilized mictic females (FMF) in Brachionus calyciflorus was studied with replicated indiv...The effect of temperature on the life history characteristics of amictic females (AF), unfertilized mictic females (UMF) and fertilized mictic females (FMF) in Brachionus calyciflorus was studied with replicated individual cultures at 20℃,25℃ and 30℃, and with algae Scenedesmus obliquus for their food. There were highly significant effects of both temperature and female type, independently and interactively, on the duration of juvenile and post-reproduction periods, and the number of eggs produced by the rotifer per life cycle. Among all the temperature-female type combinations, all the juvenile periods of FMF, and the post-reproduction periods of UMF and FMF at 20℃, were the longest, and the number of eggs produced by an UMF at 30℃ was the highest. There were highly significant effects of both temperature and female type on the duration of the reproduction period, but no clear correlation was observed between temperature and female type. The reproduction period of AF was longer than that of UMF and FMF. Only temperature influenced significantly the mean life-span of the three types of females. The duration of juvenile, reproduction and post-reproduction periods as well as the life-span of the three types of females were all reduced very significantly with rise of temperature, but the rates of reduction varied with female type. Among the three types of females, the number of eggs produced per life cycle by an UMF was the highest, and that of a FMF was the lowest. A significant relationship between the number of eggs produced per life cycle and temperature was observed only in the UMF.展开更多
Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dict...Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dictionary noise reduction and optimized FDM(OFDM)is proposed.Firstly,the characteristics of the gear signals are used to construct a compound dictionary,and the orthogonal matching pursuit algorithm(OMP)is combined to reduce the noise of the vibration signal.Secondly,in order to overcome the mode mixing phenomenon occuring during the decomposition of FDM,a method of frequency band division based on the extremum of the spectrum is proposed to optimize the decomposition quality.Then,the OFDM is used to decompose the signal into several analytic Fourier intrinsic band functions(AFIBFs).Finally,the AFIBF with the largest correlation coefficient is selected for Hilbert envelope spectrum analysis.The fault feature frequencies of the vibration signal can be accurately extracted.The proposed method is validated through analyzing the gearbox fault simulation signal and the real vibration signals collected from an experimental gearbox.展开更多
To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acq...To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acquisition, knowledge representation and reasoning used in CNC programming were researched. The CNC programming system functional architecture of impeller parts based on knowledge based engineering(KBE) was constructed. The structural model of the general knowledge-based system(KBS) was also constructed. The KBS of CNC programming system was established through synthesizing database technology and knowledge base theory. And in the context of corporate needs, based on the knowledge-driven manufacturing platform(i.e. UG CAD/CAM), VC++6.0 and UG/Open, the KBS and UG CAD/CAM were integrated seamlessly and the intelligent CNC programming KBE system for the impeller parts was developed by integrating KBE and UG CAD/CAM system. A method to establish standard process templates was proposed, so as to develop the intelligent CNC programming system in which CNC machining process and process parameters were standardized by using this KBE system. For the impeller parts processing, the method applied in the development of the prototype system is proven to be viable, feasible and practical.展开更多
This paper focuses on the effects of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip, a double squealer tip, a...This paper focuses on the effects of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip, a double squealer tip, a pressure side tip shelf with inclined squealer tip on a double squealer tip, a tip platform extension edge in pressure side and in suction side respectively. A pressure-correction based, 3D Reynolds-averaged Navier-Stokes equations CFD code with Reynolds Stress Model was adopted. The variable specific heat was considered. The detailed tip clearance flow field with different squealer rims was described with the streamline and the velocity vector. Accordingly, the mechanisms of five passive controls were elucidated; the effects of the passive controls on turbine efficiency and tip clearance flow field were illuminated. The results showed that the secondary flow loss near the outer casing including the tip leakage losses and the passage vortex losses could be reduced in all the five passive control methods. The turbine efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine efficiency, and the efficiency increased by 0.215%.展开更多
In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an al...In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ε turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.展开更多
Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance....Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave.In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.展开更多
Three linear two-equation turbulence models k- ε, k- ω and k- 1 and a non-linear k- 1 model are used for aerodynamic and thermal turbine flow prediction. The pressure profile in the wake and the heat transfer coeffi...Three linear two-equation turbulence models k- ε, k- ω and k- 1 and a non-linear k- 1 model are used for aerodynamic and thermal turbine flow prediction. The pressure profile in the wake and the heat transfer coefficient on the blade are compared with experimental data. Good agreement is obtained with the linear k-1 model. No significant modifications are observed with the non-linear model. The balance of transport equation terms in the blade wake is also presented. Linear and non-linear k - 1 models are evaluated to predict the threedimensional vortices characterising the turbine flows. The simulations show that the passage vortex is the main origin of the losses.展开更多
In this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without se...In this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of Godunov-Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonuniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.展开更多
基金NSFC (No .3 9870 15 8) ,NaturalScienceFoundationofAnhuiProvince (No .10 0 3 3 0 No .0 42 416)andtheExcellentYouthFoundation (No .0 40 43 0 5 0 )
文摘The effect of temperature on the life history characteristics of amictic females (AF), unfertilized mictic females (UMF) and fertilized mictic females (FMF) in Brachionus calyciflorus was studied with replicated individual cultures at 20℃,25℃ and 30℃, and with algae Scenedesmus obliquus for their food. There were highly significant effects of both temperature and female type, independently and interactively, on the duration of juvenile and post-reproduction periods, and the number of eggs produced by the rotifer per life cycle. Among all the temperature-female type combinations, all the juvenile periods of FMF, and the post-reproduction periods of UMF and FMF at 20℃, were the longest, and the number of eggs produced by an UMF at 30℃ was the highest. There were highly significant effects of both temperature and female type on the duration of the reproduction period, but no clear correlation was observed between temperature and female type. The reproduction period of AF was longer than that of UMF and FMF. Only temperature influenced significantly the mean life-span of the three types of females. The duration of juvenile, reproduction and post-reproduction periods as well as the life-span of the three types of females were all reduced very significantly with rise of temperature, but the rates of reduction varied with female type. Among the three types of females, the number of eggs produced per life cycle by an UMF was the highest, and that of a FMF was the lowest. A significant relationship between the number of eggs produced per life cycle and temperature was observed only in the UMF.
基金The National Natural Science Foundation of China(No.51975117)the Key Research&Development Program of Jiangsu Province(No.BE2019086).
文摘Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dictionary noise reduction and optimized FDM(OFDM)is proposed.Firstly,the characteristics of the gear signals are used to construct a compound dictionary,and the orthogonal matching pursuit algorithm(OMP)is combined to reduce the noise of the vibration signal.Secondly,in order to overcome the mode mixing phenomenon occuring during the decomposition of FDM,a method of frequency band division based on the extremum of the spectrum is proposed to optimize the decomposition quality.Then,the OFDM is used to decompose the signal into several analytic Fourier intrinsic band functions(AFIBFs).Finally,the AFIBF with the largest correlation coefficient is selected for Hilbert envelope spectrum analysis.The fault feature frequencies of the vibration signal can be accurately extracted.The proposed method is validated through analyzing the gearbox fault simulation signal and the real vibration signals collected from an experimental gearbox.
基金Project(12ZT14)supported by the Natural Science Foundation of Shanghai Municipal Education Commission,China
文摘To solve the problem of advanced digital manufacturing technology in the practical application, a knowledge engineering technology was introduced into the computer numerical control(CNC) programming. The knowledge acquisition, knowledge representation and reasoning used in CNC programming were researched. The CNC programming system functional architecture of impeller parts based on knowledge based engineering(KBE) was constructed. The structural model of the general knowledge-based system(KBS) was also constructed. The KBS of CNC programming system was established through synthesizing database technology and knowledge base theory. And in the context of corporate needs, based on the knowledge-driven manufacturing platform(i.e. UG CAD/CAM), VC++6.0 and UG/Open, the KBS and UG CAD/CAM were integrated seamlessly and the intelligent CNC programming KBE system for the impeller parts was developed by integrating KBE and UG CAD/CAM system. A method to establish standard process templates was proposed, so as to develop the intelligent CNC programming system in which CNC machining process and process parameters were standardized by using this KBE system. For the impeller parts processing, the method applied in the development of the prototype system is proven to be viable, feasible and practical.
文摘This paper focuses on the effects of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip, a double squealer tip, a pressure side tip shelf with inclined squealer tip on a double squealer tip, a tip platform extension edge in pressure side and in suction side respectively. A pressure-correction based, 3D Reynolds-averaged Navier-Stokes equations CFD code with Reynolds Stress Model was adopted. The variable specific heat was considered. The detailed tip clearance flow field with different squealer rims was described with the streamline and the velocity vector. Accordingly, the mechanisms of five passive controls were elucidated; the effects of the passive controls on turbine efficiency and tip clearance flow field were illuminated. The results showed that the secondary flow loss near the outer casing including the tip leakage losses and the passage vortex losses could be reduced in all the five passive control methods. The turbine efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine efficiency, and the efficiency increased by 0.215%.
文摘In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ε turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.
基金supported by National Natural Science Foundation of China,Grant No.51421063
文摘Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave.In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.
文摘Three linear two-equation turbulence models k- ε, k- ω and k- 1 and a non-linear k- 1 model are used for aerodynamic and thermal turbine flow prediction. The pressure profile in the wake and the heat transfer coefficient on the blade are compared with experimental data. Good agreement is obtained with the linear k-1 model. No significant modifications are observed with the non-linear model. The balance of transport equation terms in the blade wake is also presented. Linear and non-linear k - 1 models are evaluated to predict the threedimensional vortices characterising the turbine flows. The simulations show that the passage vortex is the main origin of the losses.
文摘In this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of Godunov-Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonuniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.