In this contribution, we reported a very simple and small molecule material, 2,5-dimethoxyterephthalaldehyde(DMA). It exhibited a relatively weak fluorescence in solution, while showed a steadily increased green fluor...In this contribution, we reported a very simple and small molecule material, 2,5-dimethoxyterephthalaldehyde(DMA). It exhibited a relatively weak fluorescence in solution, while showed a steadily increased green fluorescence with typical aggregation-induced enhanced emission(AIE) effect for forming a cubic-like microcrystal structure in THF-H2 O mixed solvent.The microcrystals presented significantly higher fluorescence than that of amorphous aggregates. The DMA microcrystals suspension showed a good response to 2,4,6-trinitrophenol(TNP) with a LOD of 1.2×10^(-7) M, which is the best result of TNP detection in aqueous solution. Quantum chemical calculation revealed that DMA is a donor(D)-receptor(A) type molecule with methoxy unit as donor and carbonyl moiety as receptor. Its emission arises from an intramolecular charge transfer(ICT) from methoxy units to carbonyl units. NMR indicated that there is a strong hydrogen bond interaction between DMA and TNP.Hydrogen bond interaction can effectively decrease the intermolecular distance of DMA and TNP, which will increase the efficiency of photoinduced electron transfer(PET) and fluorescence resonance energy transfer(FRET), and hence will be advantageous for its selectivity. The microcrystal induced enhanced emission could be generally used for kinds of target molecules analysis.展开更多
Upconversion is a process in which one photon is emitted upon absorption of several photons of lower energy. Potential applications include super resolution spectroscopy, high density data storage, anti-counterfeiting...Upconversion is a process in which one photon is emitted upon absorption of several photons of lower energy. Potential applications include super resolution spectroscopy, high density data storage, anti-counterfeiting and biological imaging and photo-induced therapy. Upconversion luminescence dynamics has long been believed to be determined solely by the emitting ions and their interactions with neighboring sensitizing ions. Recent research shows that this does not hold for nanostructures.The luminescence time behavior in the nanomaterials is confirmed seriously affected by the migration process of the excitation energy. This new fundamental insight is significant for the design of functional upconversion nanostructures. In this paper we review relevant theoretical and spectroscopic results and demonstrate how to tune the rise and decay profile of upconversion luminescence based on energy migration path modulation.展开更多
Energy crisis make the effective use of low grade energy more and more urgent. It is still a worldwide difficult conundrum. To efficiently recover low grade heat, this paper deals with a theoretical analysis of a new ...Energy crisis make the effective use of low grade energy more and more urgent. It is still a worldwide difficult conundrum. To efficiently recover low grade heat, this paper deals with a theoretical analysis of a new power generation method driven by a low grade heat source. When the temperature of the low grade heat source exceeds the saturated temperature, it can heat the liquid into steam. If the steam is sealed and cooled in a container, it will lead to a negative pressure condition. The proposed power generation method utilizes the negative pressure condition in the sealed container, called as a condensator. When the condensator is connected to a liquid pool, the liquid will be pumped into it by the negative pressure condition. After the conden- sator is filled by liquid, the liquid flows back into the pool and drives the turbine to generate electricity. According to our analysis, for water, the head pressure of water pumped into the condensator could reach 9.5 m when the temperature of water in the pool is 25 ℃, and the steam temperature is 105 ℃. Theoretical thermal efficiency of this power generation system could reach 3.2% to 5.8% varying with the altitude of the condensator to the water level, ignoring steam leakage loss.展开更多
Developing electrocatalysts with high performance and low cost for the oxygen evolution reaction(OER)is of great importance for fabricating renewable energy storage and conversion devices.Here,a series of boron-doped ...Developing electrocatalysts with high performance and low cost for the oxygen evolution reaction(OER)is of great importance for fabricating renewable energy storage and conversion devices.Here,a series of boron-doped graphene(BG)-supported bimetallic oxides of Co and Ni were obtained and served as OER electrocatalysts.Surprisingly,the annealed Co-Ni-Ox/BG with a Co/Ni ratio of 1:1 exhibits high performance toward oxygen evolution in alkaline electrolyte.The overpotential is only 310 mV at the current density of 10 mA cm-2,superior to many mono-metallic oxides reported before,and even comparable to the commercial RuO2.The regulation of charge distribution in bimetallic oxides and the strong synergistic coupling effects together contribute to the superior electrocatalytic performance of the Co-Ni-Ox/BG toward OER.This study also offers several effective ways to design high-performance OER electrocatalysts for water splitting.展开更多
Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for...Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for safe batteries and smart electronics.The most typical stimulus-responsive materials are polymers that can change their conformation by forming and destroying secondary forces,including hydrogen bonds and electrostatic interactions in response to external stimuli,accompanied by changes in the intrinsic properties such as conductivity and hydrophobicity.Although the applications of stimulus-responsive functions in rechargeable batteries are still in the early stage because of the complexity and compatibility of battery architectures,many new concepts of regulating the polymer structures upon applications of stimuli have already been developed.In this review,we discuss the recent progress of stimulus-responsive polymers on energy storage devices featuring thermal protection and intelligent scenarios,with a focus on the detailed structural transformations of polymers under a given stimulus and the corresponding changes in battery performance.Finally,we present perspectives on the current limitations and future research directions of stimulus-responsive polymers for energy storage devices.展开更多
基金supported by the Ministry of Science and Technology (2016YFA0200800)the National Natural Science Foundation of China (51473182, 61731016, 61771460)the Youth Innovation Promotion Association of Chinese Academy of Sciences (2015190)
文摘In this contribution, we reported a very simple and small molecule material, 2,5-dimethoxyterephthalaldehyde(DMA). It exhibited a relatively weak fluorescence in solution, while showed a steadily increased green fluorescence with typical aggregation-induced enhanced emission(AIE) effect for forming a cubic-like microcrystal structure in THF-H2 O mixed solvent.The microcrystals presented significantly higher fluorescence than that of amorphous aggregates. The DMA microcrystals suspension showed a good response to 2,4,6-trinitrophenol(TNP) with a LOD of 1.2×10^(-7) M, which is the best result of TNP detection in aqueous solution. Quantum chemical calculation revealed that DMA is a donor(D)-receptor(A) type molecule with methoxy unit as donor and carbonyl moiety as receptor. Its emission arises from an intramolecular charge transfer(ICT) from methoxy units to carbonyl units. NMR indicated that there is a strong hydrogen bond interaction between DMA and TNP.Hydrogen bond interaction can effectively decrease the intermolecular distance of DMA and TNP, which will increase the efficiency of photoinduced electron transfer(PET) and fluorescence resonance energy transfer(FRET), and hence will be advantageous for its selectivity. The microcrystal induced enhanced emission could be generally used for kinds of target molecules analysis.
基金supported by the European Union MSCA-ITN-ETN Action Program,Image-Guided Surgery and Personalised Postoperative Immunotherapy to Improving Cancer Outcome(ISPIC)(Grant No.675743)the Netherlands Organisation for Scientific Research in the framework of the Fund New Chemical Innovation(Grant No.731.015.206)+2 种基金the European COST Action(Grant No.CM1403)the Joint Research Program between CAS of China and the Royal Netherlands Academy of Arts and Sciences(KNAW)Innovation Project of State Key Laboratory of Luminescence and Applications of China
文摘Upconversion is a process in which one photon is emitted upon absorption of several photons of lower energy. Potential applications include super resolution spectroscopy, high density data storage, anti-counterfeiting and biological imaging and photo-induced therapy. Upconversion luminescence dynamics has long been believed to be determined solely by the emitting ions and their interactions with neighboring sensitizing ions. Recent research shows that this does not hold for nanostructures.The luminescence time behavior in the nanomaterials is confirmed seriously affected by the migration process of the excitation energy. This new fundamental insight is significant for the design of functional upconversion nanostructures. In this paper we review relevant theoretical and spectroscopic results and demonstrate how to tune the rise and decay profile of upconversion luminescence based on energy migration path modulation.
基金Project (No. 51109174) supported by the National Natural Science Foundation of China
文摘Energy crisis make the effective use of low grade energy more and more urgent. It is still a worldwide difficult conundrum. To efficiently recover low grade heat, this paper deals with a theoretical analysis of a new power generation method driven by a low grade heat source. When the temperature of the low grade heat source exceeds the saturated temperature, it can heat the liquid into steam. If the steam is sealed and cooled in a container, it will lead to a negative pressure condition. The proposed power generation method utilizes the negative pressure condition in the sealed container, called as a condensator. When the condensator is connected to a liquid pool, the liquid will be pumped into it by the negative pressure condition. After the conden- sator is filled by liquid, the liquid flows back into the pool and drives the turbine to generate electricity. According to our analysis, for water, the head pressure of water pumped into the condensator could reach 9.5 m when the temperature of water in the pool is 25 ℃, and the steam temperature is 105 ℃. Theoretical thermal efficiency of this power generation system could reach 3.2% to 5.8% varying with the altitude of the condensator to the water level, ignoring steam leakage loss.
基金the financial supports from the National Natural Science Foundation of China(21902062 and 21705056)the Natural Science Foundation of Shandong Province(ZR2019YQ10 and ZR2018PB009)+1 种基金the Young Taishan Scholars Program(tsqn201812080)the Open Funds of the State Key Laboratory of Electroanalytical Chemistry(SKLEAC201901)。
文摘Developing electrocatalysts with high performance and low cost for the oxygen evolution reaction(OER)is of great importance for fabricating renewable energy storage and conversion devices.Here,a series of boron-doped graphene(BG)-supported bimetallic oxides of Co and Ni were obtained and served as OER electrocatalysts.Surprisingly,the annealed Co-Ni-Ox/BG with a Co/Ni ratio of 1:1 exhibits high performance toward oxygen evolution in alkaline electrolyte.The overpotential is only 310 mV at the current density of 10 mA cm-2,superior to many mono-metallic oxides reported before,and even comparable to the commercial RuO2.The regulation of charge distribution in bimetallic oxides and the strong synergistic coupling effects together contribute to the superior electrocatalytic performance of the Co-Ni-Ox/BG toward OER.This study also offers several effective ways to design high-performance OER electrocatalysts for water splitting.
基金financially supported by the National Key R&D Program of China(2017YFE0127600)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+4 种基金the National Natural Science Foundation of China(21975271)the Key-Area Research and Development Program of Guangdong Province(2020B090919005)Shandong Natural Science Foundation(ZR2020ZD07 and ZR2021QB106)the financial support from the Youth Innovation Promotion Association of CAS(2019214)Shandong Energy Institute(SEI 1202127)。
文摘Stimulus-responsive energy storage devices,which can respond to external stimuli,such as heat,pH,moisture,pressure,or electric field,have recently attracted intensive attention,aiming at the ever-increasing demand for safe batteries and smart electronics.The most typical stimulus-responsive materials are polymers that can change their conformation by forming and destroying secondary forces,including hydrogen bonds and electrostatic interactions in response to external stimuli,accompanied by changes in the intrinsic properties such as conductivity and hydrophobicity.Although the applications of stimulus-responsive functions in rechargeable batteries are still in the early stage because of the complexity and compatibility of battery architectures,many new concepts of regulating the polymer structures upon applications of stimuli have already been developed.In this review,we discuss the recent progress of stimulus-responsive polymers on energy storage devices featuring thermal protection and intelligent scenarios,with a focus on the detailed structural transformations of polymers under a given stimulus and the corresponding changes in battery performance.Finally,we present perspectives on the current limitations and future research directions of stimulus-responsive polymers for energy storage devices.