This work presents a self-consistent two-dimensional(2-D) simulation method with unified physical models for different operation regimes of charge trapping memory. The simulation carefully takes into consideration the...This work presents a self-consistent two-dimensional(2-D) simulation method with unified physical models for different operation regimes of charge trapping memory. The simulation carefully takes into consideration the tunneling process, charge trapping/de-trapping mechanisms, and 2-D drift-diffusion transport within the storage layer. A string of three memory cells has been simulated and evaluated for different gate stack compositions and temperatures. The simulator is able to describe the charge transport behavior along bitline and tunneling directions under different operations. Good agreement has been made with experimental data,which hence validates the implemented physical models and altogether confirms the simulation as a valuable tool for evaluating the characteristics of three-dimensional NAND flash memory.展开更多
Monte Carlo simulation results are reported on the single event upset(SEU) triggered by the direct ionization effect of low-energy proton. The SEU cross-sections on the 45 nm static random access memory(SRAM) were com...Monte Carlo simulation results are reported on the single event upset(SEU) triggered by the direct ionization effect of low-energy proton. The SEU cross-sections on the 45 nm static random access memory(SRAM) were compared with previous research work, which not only validated the simulation approach used herein, but also exposed the existence of saturated cross-section and the multiple bit upsets(MBUs) when the incident energy was less than 1 MeV. Additionally, it was observed that the saturated cross-section and MBUs are involved with energy loss and critical charge. The amount of deposited charge and the distribution with respect to the critical charge as the supplemental evidence are discussed.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 91230107)National Basic Research Program of China (973) (Grant No. 2013CBA01604)National High Technology Research and Development Program of China (863) (Grant No. 2015AA016501)
文摘This work presents a self-consistent two-dimensional(2-D) simulation method with unified physical models for different operation regimes of charge trapping memory. The simulation carefully takes into consideration the tunneling process, charge trapping/de-trapping mechanisms, and 2-D drift-diffusion transport within the storage layer. A string of three memory cells has been simulated and evaluated for different gate stack compositions and temperatures. The simulator is able to describe the charge transport behavior along bitline and tunneling directions under different operations. Good agreement has been made with experimental data,which hence validates the implemented physical models and altogether confirms the simulation as a valuable tool for evaluating the characteristics of three-dimensional NAND flash memory.
基金supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062 and 11005134)
文摘Monte Carlo simulation results are reported on the single event upset(SEU) triggered by the direct ionization effect of low-energy proton. The SEU cross-sections on the 45 nm static random access memory(SRAM) were compared with previous research work, which not only validated the simulation approach used herein, but also exposed the existence of saturated cross-section and the multiple bit upsets(MBUs) when the incident energy was less than 1 MeV. Additionally, it was observed that the saturated cross-section and MBUs are involved with energy loss and critical charge. The amount of deposited charge and the distribution with respect to the critical charge as the supplemental evidence are discussed.