Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain...Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.展开更多
Abstract In this paper,the existence of periodic solution for the third order nonlinear ordinary differential equation of the form x…+f()+g()+h(x)=p(t) is considered,where f,g,h and p are the continuous f...Abstract In this paper,the existence of periodic solution for the third order nonlinear ordinary differential equation of the form x…+f()+g()+h(x)=p(t) is considered,where f,g,h and p are the continuous functions,and p(t+T)=p(t). By using the Leray Schauder degree method,some sufficient conditions to guarantee the existence of T periodic solution for the equation are obtained.Some previous results are extended and improved.展开更多
By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages...In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages and the compactness results on L 1-theory.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic func- tions,we investigate the problem of the existence of admissible meromorphic solutions of a type of systems of higher-order algebraic different...Using the Nevanlinna theory of the value distribution of meromorphic func- tions,we investigate the problem of the existence of admissible meromorphic solutions of a type of systems of higher-order algebraic differential equations.展开更多
This paper studies the existence of nontrival homoclinic orbits of the Hamiltonian systems -L(t)q+V′(t,q)=0 by using the critical point theory, where the potential V(t,q)=b(t)W(q) can change sign. Under a new kind of...This paper studies the existence of nontrival homoclinic orbits of the Hamiltonian systems -L(t)q+V′(t,q)=0 by using the critical point theory, where the potential V(t,q)=b(t)W(q) can change sign. Under a new kind of "superquadratic" condition on W, some new results are obtained.展开更多
We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniquen...We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones and we also weaken assumptions on the operator and the nonlinearity to get the above results. Moreover, we do not impose the restricted condition on p(x) and the uniform monotonicity of the operator to show the existence of three distinct solutions.展开更多
The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical system...The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.展开更多
The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity...The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity f(z1, z2, ?) is merely finitely differentiable with respect to all variables rather than analytic and quasi-periodically forced in time. By developing a smoothing and approximation theory, the existence of many quasi-periodic solutions of the above equation is proved.展开更多
In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegat...In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.展开更多
This paper deals with the existence of solutions for the problem{(Фp(u′))′=f(t,u,u′),t∈(0,1), u′(0)=0,u(1)=∑i=1^n-2aiu(ηi),where Фp(s)=|s|^p-2s,p〉1.0〈η1〈η2〈…〈ηn-2〈1,ai(i=1,2,…,n-...This paper deals with the existence of solutions for the problem{(Фp(u′))′=f(t,u,u′),t∈(0,1), u′(0)=0,u(1)=∑i=1^n-2aiu(ηi),where Фp(s)=|s|^p-2s,p〉1.0〈η1〈η2〈…〈ηn-2〈1,ai(i=1,2,…,n-2)are non-negative constants and ∑i=1^n-2ai=1.Some known results are improved under some sign and growth conditions. The proof is based on the Brouwer degree theory.展开更多
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.
文摘Abstract In this paper,the existence of periodic solution for the third order nonlinear ordinary differential equation of the form x…+f()+g()+h(x)=p(t) is considered,where f,g,h and p are the continuous functions,and p(t+T)=p(t). By using the Leray Schauder degree method,some sufficient conditions to guarantee the existence of T periodic solution for the equation are obtained.Some previous results are extended and improved.
基金Supported by the Natural Science Foundation of Guangdong Province(032469)
文摘By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
文摘In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages and the compactness results on L 1-theory.
基金Supported by the National Natural Science Foundation of China (19871050)
文摘Using the Nevanlinna theory of the value distribution of meromorphic func- tions,we investigate the problem of the existence of admissible meromorphic solutions of a type of systems of higher-order algebraic differential equations.
文摘This paper studies the existence of nontrival homoclinic orbits of the Hamiltonian systems -L(t)q+V′(t,q)=0 by using the critical point theory, where the potential V(t,q)=b(t)W(q) can change sign. Under a new kind of "superquadratic" condition on W, some new results are obtained.
基金supported by the National Research Foundation of Korea Grant Funded by the Korea Government (Grant No. NRF-2015R1D1A3A01019789)
文摘We show the existence and multiplicity of solutions to degenerate p(x)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones and we also weaken assumptions on the operator and the nonlinearity to get the above results. Moreover, we do not impose the restricted condition on p(x) and the uniform monotonicity of the operator to show the existence of three distinct solutions.
基金National Natural Science Foundation of China(No.19731003,No.19961003)Yunnan Provincial Natural Science Foundation of China(No.1999A0018M,No.2000A0002M)
文摘The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.
基金supported by the National Natural Science Foundation of China(No.11201292)Shanghai Natural Science Foundation(No.12ZR1444300)the Key Discipline"Applied Mathematics"of Shanghai Second Polytechnic University(No.XXKZD1304)
文摘The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity f(z1, z2, ?) is merely finitely differentiable with respect to all variables rather than analytic and quasi-periodically forced in time. By developing a smoothing and approximation theory, the existence of many quasi-periodic solutions of the above equation is proved.
文摘In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form-div(a(x)▽_p u(x)) = g(λ, x, |u|^(p-2)u) in R^N, where ▽_pu =|▽u|^(p-2)▽u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.
基金the National Natural Science Foundation of China(No.10771212)the Foundation of China University of Mining and Technology(Nos.2005A041+1 种基金2006A0422008A037)
文摘This paper deals with the existence of solutions for the problem{(Фp(u′))′=f(t,u,u′),t∈(0,1), u′(0)=0,u(1)=∑i=1^n-2aiu(ηi),where Фp(s)=|s|^p-2s,p〉1.0〈η1〈η2〈…〈ηn-2〈1,ai(i=1,2,…,n-2)are non-negative constants and ∑i=1^n-2ai=1.Some known results are improved under some sign and growth conditions. The proof is based on the Brouwer degree theory.