Based on the monthly average SLP data in the northern hemisphere from 1899 to 2009, East Asian summer monsoon intensity index in recent 111 years was calculated, and the interdecadal and interannual variation characte...Based on the monthly average SLP data in the northern hemisphere from 1899 to 2009, East Asian summer monsoon intensity index in recent 111 years was calculated, and the interdecadal and interannual variation characteristics of East Asian summer monsoon were analyzed. The results showed that East Asian summer monsoon in the 1920s was the strongest. The intensity of East Asian summer monsoon after the middle period of the 1980s presented weakened trend. It was the weakest in the early 21st century. Morlet wavelet analysis found that the interdecadal and interannual variations of East Asian summer monsoon had quasi-10-year and quasi-2-year significance periods. The interannual variation of precipitation in the east of China closely related to intensity variation of East Asian summer monsoon. In strong (weak) East Asian summer monsoon year, the rainfall in the middle and low reaches of Yangtze River was less (more) than that in common year, while the rainfall in North China was more (less) than that in common year. The weakening of East Asian summer monsoon was an important reason for that it was rainless (drought) in North China and rainy (flood) in the middle and low reaches of the Yangtze River after the middle period of the 1980s.展开更多
Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductan...Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductance and stomatal limitation value tended to decline simultaneously, while the interoellularCO2 concentration was increased. According to the two criteria discriminating the stomatal limitation of Photosynthesis suggeSted by Fmrquhar and Sharkey, the seasonal changes in these parameters indicated that the decrease in Pn may not be due to stomatal factor. These studies proved that the relative contents of the large subunit of Rubisco and the photochemical activities correlated with the seasonal changes in the net photosyntheticrate, whieh may show that these two factors contribute primarily to the seasonal changeS in CO2 assimilation.展开更多
Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the north...Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the northern middle and high latitudes. In this study, time series dataset of normalized difference vegetation index (NDVI) and corresponding ground-based information on vegetation, climate, soil, and solar radiation, together with an ecological process model, were used to explore the seasonal trends of terrestrial NPP and their geographical differences in China from 1982 to 1999. As the results,. seasonal total NPP in China showed a significant increase for all four seasons (spring, summer, autumn and winter) during the past 18 years. The spring NPP indicated the largest increase rate, while the summer NPP was with the largest increase in magnitude. The response of NPP to climate changes varied with different vegetation types. The increased NPP was primarily led by an advanced growing season for broadleaf evergreen forest, needle-leaf evergreen forest, and needle-leaf deciduous forest, whilst that was mainly due to enhanced vegetation activity (amplitude of growth cycle) during growing season for broadleaf deciduous forest, broadleaf and needle-leaf mixed forest, broadleaf trees with groundcover, perennial grasslands, broadleaf shrubs with grasslands, tundra, desert, and cultivation. The regions with the largest increase in spring NPP appeared mainly in eastern China, while the areas with the largest increase in summer NPP occurred in most parts of Northwestern China, Qinghai-Xizang Plateau, Mts. Xiaoxinganling-Changbaishan, Sanjiang Plain, Songliao Plain, Sichuan Basin, Leizhou Peninsula, part of the middle and lower Yangtze River, and southeastern mountainous areas of China. In autumn, the largest NPP increase appeared in Yunnan Plateau-Eastern Xizang and the areas around Hulun Lake. Such different ways of the NPP responses depended on regional climate attributes and their changes.展开更多
With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the No...With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the Northern Yellow Sea cold water mass (NYSCWM) were studied, including both its spatial pattern over the whole bottom and historically typical section from Dalian to Chengshantou. Seasonal evolution as well as its spatial distribution was analyzed to further understand the NYSCWM, as a result, some new features about the NYSCWM had been found. Compared to the previous studies, the center of colder water mass in summer moved eastward, but sharing the similar peak values for both temperature and salinity with historical data. In spring, the axis of 32.8 psu saltier moves westward approximately 75 km and the high salinity areas beyond 123.5° E were largely impaired comparing to that in winter. In winter, the NYSCWM almost disappeared due to the reinforced wind-induced mixing and the Yellow Sea Warm Currents (YSWC) moved northward and controlled most of the Northern Yellow Sea region. In autumn, two cold centers with the peak value of 9℃ were found inside the attenuated NYSCWM.展开更多
A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004....A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004. Results indicated that the total soil respiration, root-severed soil respiration and the root respiration followed a similar seasonal trend, with a high rate in summer due to wet and high temperature and a low rate in spring and autumn due to lower temperature. The mean rates of total soil respiration, root-severed soil respiration and root respiration were 4.44, 2.30 and 2.14 μmol.m^-2.s^-1, respectively during the growing season, and they were all exponentially correlated with temperature. Soil respiration rate had a linear correlation with soil volumetric moisture. The Q10 values for total soil respiration, root-severed soil respiration and root respiration were 2,82, 2.59 and 3. 16, respectively. The contribution rate of root respiration to the total soil respiration was between 29.3% and 58.7% during the growing season, indicating that root is a major component of soil respiration. The annual mean rates of total soil respiration, root-severed soil respiration and root respiration were 1.96, 1.08, and 0.87 μmol.m^-2.s^-1, or 741.73 408.71, and 329.24 g.m^-2.a^-1, respectively. Root respiration contributed 44.4% to the annual total soil respiration. The relationship proposed for soil respiration with soil lemperature was useful for understanding and predicting potential changes in Changbai Mountain B. platyphylla forest ecosystem in response to forest management and climate change.展开更多
The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observa...The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.展开更多
Wood is the product of cambial activity in trees, and the seasonal activity style of cambium directly influences wood biomass production, structures and properties. The seasonal changes in the ultrastructure of the va...Wood is the product of cambial activity in trees, and the seasonal activity style of cambium directly influences wood biomass production, structures and properties. The seasonal changes in the ultrastructure of the vascular cambium activity of Populus tonientosa Carr. planted in Beijing area were examined in shoot tissues collected during 15 months by means of transmission electron microscopy. Before xylem mother cells reactivated completely, the dividing fusiform cells in cambium and new phloem cells had appeared at the same time. The initiation of cambial activity may be related to the bud sprouting and the young leaf growth in shoots. More details about the ultrastructural changes of cambial cells at the onset of cambial activity have been gained. When the large vacuole in active cambial cells divided into smaller ones during the dormant phase, proteinaceous material that disappeared in active cambial cells refilled many of these small vactioles. In addition, lipid droplets and starch granules had the same cycles as proteinaceous material. The plasmalemma invaginations of fusiform cells were observed not only in active phase but also in dormancy. The endomembrane system consisting of nuclear membrane, endoplasmic reticulum (ER), dictyosomes and their secretory vesicles, changed in form and distribution at different phases during a cycle and performed important roles at the onset of active cambium and during the wall formation process of secondary xylem cells. The tangential walls remained relatively thin throughout the year but the radial walls thickened markedly when the cambium was dormant. During the transition from dormancy to activity, a partial autolysis occurred in the radial walls of the cambial cells, especially at the cell wall junctions. A notable feature of the cells at the onset of cambial activity was the thinning of the radial walls.展开更多
[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classificat...[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classification and identification methods were used to isolate,purify and identify.[Result]3 genera and 22 species of nematode-trapping fungi were isolated.Arthrobotrys oligospora,A.musiformis and Dactylella leptospora were the dominant species,and their detection rates were 28.05%,16.04% and 8.92% respectively.By analyzing the diversity of nematode-trapping fungi in four seasons,it was found that the biological diversity was richer in summer,spring and autumn,and the diversity indexes were 2.59,2.47 and 2.34 respectively.The diversity index in winter was 1.48 and was lower.Species forming the adhesive nets were predominant;positive rate was 41.00%.[Conclusion]The rich nematode-trapping fungi resource existed in Erhai Lake,and its biological diversity had the seasonal variation characteristic.The nematode-trapping fungi which formed the viscous net were the dominant species in Erhai Lake.展开更多
Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ran...Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.展开更多
Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007...Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007 to September 2008. The results show that the changes of aboveground biomass during the growing season are best described by the twice function curve model, whereas the changes of belowground biomass follow the exponential increase curve model. Both the organic carbon contents in the above- and belowground plant parts show significant positive linear correlations with the growing time, and the coefficients R2 are 0.983 and 0.746, respectively. The carbon accu-mulations of the above- and belowground plant parts during the growing season show the same dynamics as those of the biomass. However, the nitrogen contents and accumulation in C. lasiocarpa aboveground and belowground parts show exponential increase during the growing season. The dynamics of C. lasiocarpa phosphorus contents follows the twice function curve model, whereas the accumulation of phosphorus shows the linear increase. The ratios of C/N in different parts of C. lasiocarpa fit the negative linear relations with total nitrogen content in the growing season. Moreover, the ratios of C/P in C. lasiocarpa plant also fit the negative linear relations with total phosphorus content. The results show that nitrogen is the primary limiting nutrient for C. lasiocarpa growth as compared with carbon and phosphorus.展开更多
[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer preci...[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer precipitation data for 160 observation stations in China during 1951 -2000 by the utilization of empirical orthogonal function (EOF), and characteristics of interannual and interdecadal variability were analyzed. [Result] The summer precipitation mainly distributes in eastern part of China; The 1 st, 2nd and 3rd EOF modes of spatial distribution are especially remarkable as well consistent with the results of previous reports about three rainfall patterns from analysis on the percentages of precipitation anomaly of summer. [Conclusion] There exists interannual and interdecadal variability for summer precipitation in China.展开更多
[Objective] The aim was to analyze changing characters of four seasons in Jiyang, providing references for farming and disaster prevention in the area. [Methed] Changing characters of initial time and lasting periods ...[Objective] The aim was to analyze changing characters of four seasons in Jiyang, providing references for farming and disaster prevention in the area. [Methed] Changing characters of initial time and lasting periods of four seasons in Jiyang for 30 years were analyzed from meteorological standpoint with weather information from 1981 to 2010 observed in surface meteorological observation in Jiyang. [Result] Recent 30 years, initial time of spring and winter in Jiyang were earlier than before, especially for spring. In contrast, initial time of summer and autumn were later, especially for autumn. In addition, periods of spring and winter declined and the latter changed more significantly. Meanwhile, periods of summer and autumn extended and rate of linear trend for summer period was 0.042 hou/year. [Conclusion] The research indicated that lasting days of summer extended significantly and of spring and winter shortened under the background of global warming.展开更多
From studies undertaken during 1995-2004, annual budgets of CH4 emissions from natural wetlands and its temporal and spatial variations were examined throughout China, and various factors influencing CH4 emissions wer...From studies undertaken during 1995-2004, annual budgets of CH4 emissions from natural wetlands and its temporal and spatial variations were examined throughout China, and various factors influencing CH4 emissions were also evaluated. The seasonal variation in CH4 emissions that increased with increasing plant growth reached its peak in August; decrease in the emissions was found in freshwater marshes but not in peatlands. Emissions were mainly controlled by temperature and depth of standing water. Low CH4 emissions at the early plant growing stages were not because of deficiency of organic C for CH4 production but because of low temperatures. Low temperatures not only reduced CH4 production but also stimulated CH4 oxidation by lowering the activity of other aerobic microbes which left more 02 in the rhizosphere for methanotrophs. Low summer temperatures (below 20 ℃) in the Qinghai-Tibetan Plateau lowered CH4 production and CH4 emission resulting in little or no seasonal variation of emissions. Diel and spatial variation in CH4 emissions depended on plant species. For plants that transport CH4 using the pressure-driven convective through-flow mechanism, diel variation in CH4 emissions was governed by diel variation of solar energy load (that produces temperature and vapor pressure differences within various plant tissues) and stomatal conductance. For plants that transport gases using the molecular diffusion mechanism only, the diel variation of CH4 emissions was because of differences in the magnitude of O2 produced through photosynthesis and then delivered into the rhizomes and/or rhizosphere for CH4 oxidation. Emergent plants could transport more CH4 than submerged plants because the former transport CH4 directly into the atmosphere rather than into water as do submerged plants where CH4 can be further be oxidized during its diffusion from water to the atmosphere. Emergent plants with high gas transport capacity could not only transport more CH4 into the atmosphere but also live in deeper water, which in turn would inundate more plant litter, resulting in increased availability of C for CH4 production. Annual CH4 emission from natural wetlands in China was estimated to be 1.76 Tg, up to 1.17 Tg of which was emitted from freshwater marshes. CH4 emission from freshwater marshes mainly occurred during the growing season and less than 8% was released during the freeze-thawing period despite the fact that thawing efficiently released CH4 fixed in ice column into the atmosphere.展开更多
Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at 2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to qua...Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at 2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to quantify seasonal dynamics in SOC for bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) stands. The results with IM compared to CM showed large decreases in total organic carbon (TOC), microbial biomass carbon (MBC), water-soluble organic carbon (WSOC), and the MBC/TOC ratio in the soils. With all IM plots in the 0-20 cm depth across sampling periods, average decreases compared with CM were: TOC, 12.1%; MBC, 26.1%; WSOC, 29.3%; the MBC/TOC ratio, 16.1%; and the WSOC/TOC ratio, 20.0%. Due to seasonal changes of climate, seasonal variations were observed in MBC and WSOC. Soil MBC in the 0-20 cm depth in September compared to May were 122.9% greater for CM and 57.6% greater for IM. However, due primarily to soil temperature, soil MBC was higher during the July to November period, whereas because of soil moisture, WSOC was lower in July and January. This study revealed that intensive management in bamboo plantations depleted the soil C pool; therefore, soil quality with IM should be improved through application of organic manures.展开更多
Seasonal variations of water masses in the East China Sea(ECS) and adjacent areas are investigated, based on historical data of temperature and salinity( T-S). Dynamic and thermodynamic mechanisms that affect seasonal...Seasonal variations of water masses in the East China Sea(ECS) and adjacent areas are investigated, based on historical data of temperature and salinity( T-S). Dynamic and thermodynamic mechanisms that affect seasonal variations of some dominant water masses are discussed, with reference to meteorological data. In the ECS above depth 600 m, there are eight water masses in summer but only five in winter. Among these, Kuroshio Surface Water(KSW), Kuroshio Intermediate Water(KIW), ECS Surface Water(ECSSW), Continental Coastal Water(CCW), and Yellow Sea Surface Water(YSSW) exist throughout the year. Kuroshio Subsurface Water(KSSW), ECS Deep Water(ECSDW), and Yellow Sea Bottom Water(YSBW) are all seasonal water masses, occurring from May through October. The CCW, ECSSW and KSW all have significant seasonal variations, both in their horizontal and vertical extents and their T-S properties. Wind stress, the Kuroshio and its branch currents, and coastal currents are dynamic factors for seasonal variation in spatial extent of the CCW, KSW, and ECSSW, whereas sea surface heat and freshwater fl uxes are thermodynamic factors for seasonal variations of T-S properties and thickness of these water masses. In addition, the CCW is affected by river runoff and ECSSW by the CCW and KSW.展开更多
This study investigated the seasonal changes in carbon (C) and nitrogen (N) stable isotope values of several typical food sources of Apostichopus japonicus in a farm pond, including particulate organic matter (POM), m...This study investigated the seasonal changes in carbon (C) and nitrogen (N) stable isotope values of several typical food sources of Apostichopus japonicus in a farm pond, including particulate organic matter (POM), macroalgae, benthic microalgae and animals such as nematode and copepod. The stable isotope technique was used to quantify relative contributions of various sources to the food uptake by A. japonicus. The results showed that significant changes occurred in the C and N stable isotope values of sea cucumber food sources due to the seasonality of micro-or macroalgae prosperity and the fluctuation of environmental conditions. The sea cucumber A. japonicus exhibited corresponding alterations in feeding strategy in response to the changes in food conditions. Calculation with a stable isotope mixing model showed that macroalgae was the principal food source for A. japonicus throughout the 1-yr investigation, with the relative contribution averaging 28.1% - 63.2%. The relative contributions of other food sources such as copepod and nematode, POM, benthic microalgae to the total food uptake by sea cucumber averaged 22.6% - 39.1%, 6.3% - 22.2%, 2.8% - 6.5%, and 2.8% - 4.2%, respectively. Together these results indicated that the seasonal changes in food sources led to the obvious temporal differences in the relative contribution of various food sources utilized by A. japonicus. Such findings provide the basic scientific information for improving the aquaculture techniques of A. japonicus, particularly for optimizing the food environment of A. japonicus culture in farm ponds.展开更多
基金Supported by National Scientific and Technological Support Plan in China(2009BAC51B03)"Six-Talent Peak"Item of Jiangsu Province(2005)~~
文摘Based on the monthly average SLP data in the northern hemisphere from 1899 to 2009, East Asian summer monsoon intensity index in recent 111 years was calculated, and the interdecadal and interannual variation characteristics of East Asian summer monsoon were analyzed. The results showed that East Asian summer monsoon in the 1920s was the strongest. The intensity of East Asian summer monsoon after the middle period of the 1980s presented weakened trend. It was the weakest in the early 21st century. Morlet wavelet analysis found that the interdecadal and interannual variations of East Asian summer monsoon had quasi-10-year and quasi-2-year significance periods. The interannual variation of precipitation in the east of China closely related to intensity variation of East Asian summer monsoon. In strong (weak) East Asian summer monsoon year, the rainfall in the middle and low reaches of Yangtze River was less (more) than that in common year, while the rainfall in North China was more (less) than that in common year. The weakening of East Asian summer monsoon was an important reason for that it was rainless (drought) in North China and rainy (flood) in the middle and low reaches of the Yangtze River after the middle period of the 1980s.
文摘Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductance and stomatal limitation value tended to decline simultaneously, while the interoellularCO2 concentration was increased. According to the two criteria discriminating the stomatal limitation of Photosynthesis suggeSted by Fmrquhar and Sharkey, the seasonal changes in these parameters indicated that the decrease in Pn may not be due to stomatal factor. These studies proved that the relative contents of the large subunit of Rubisco and the photochemical activities correlated with the seasonal changes in the net photosyntheticrate, whieh may show that these two factors contribute primarily to the seasonal changeS in CO2 assimilation.
文摘Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the northern middle and high latitudes. In this study, time series dataset of normalized difference vegetation index (NDVI) and corresponding ground-based information on vegetation, climate, soil, and solar radiation, together with an ecological process model, were used to explore the seasonal trends of terrestrial NPP and their geographical differences in China from 1982 to 1999. As the results,. seasonal total NPP in China showed a significant increase for all four seasons (spring, summer, autumn and winter) during the past 18 years. The spring NPP indicated the largest increase rate, while the summer NPP was with the largest increase in magnitude. The response of NPP to climate changes varied with different vegetation types. The increased NPP was primarily led by an advanced growing season for broadleaf evergreen forest, needle-leaf evergreen forest, and needle-leaf deciduous forest, whilst that was mainly due to enhanced vegetation activity (amplitude of growth cycle) during growing season for broadleaf deciduous forest, broadleaf and needle-leaf mixed forest, broadleaf trees with groundcover, perennial grasslands, broadleaf shrubs with grasslands, tundra, desert, and cultivation. The regions with the largest increase in spring NPP appeared mainly in eastern China, while the areas with the largest increase in summer NPP occurred in most parts of Northwestern China, Qinghai-Xizang Plateau, Mts. Xiaoxinganling-Changbaishan, Sanjiang Plain, Songliao Plain, Sichuan Basin, Leizhou Peninsula, part of the middle and lower Yangtze River, and southeastern mountainous areas of China. In autumn, the largest NPP increase appeared in Yunnan Plateau-Eastern Xizang and the areas around Hulun Lake. Such different ways of the NPP responses depended on regional climate attributes and their changes.
文摘With the in-situ temperature and salinity observations taken seasonally in the Northern Yellow Sea area during the National 908 Water Investigation and Research Project from 2006 to 2007, the characteristics of the Northern Yellow Sea cold water mass (NYSCWM) were studied, including both its spatial pattern over the whole bottom and historically typical section from Dalian to Chengshantou. Seasonal evolution as well as its spatial distribution was analyzed to further understand the NYSCWM, as a result, some new features about the NYSCWM had been found. Compared to the previous studies, the center of colder water mass in summer moved eastward, but sharing the similar peak values for both temperature and salinity with historical data. In spring, the axis of 32.8 psu saltier moves westward approximately 75 km and the high salinity areas beyond 123.5° E were largely impaired comparing to that in winter. In winter, the NYSCWM almost disappeared due to the reinforced wind-induced mixing and the Yellow Sea Warm Currents (YSWC) moved northward and controlled most of the Northern Yellow Sea region. In autumn, two cold centers with the peak value of 9℃ were found inside the attenuated NYSCWM.
基金supported by the Knowledge Inno-vation Project of the Chinese Academy of Sciences (KZCX2-YW-416)the National Natural Science Foundation (90411020)
文摘A stdudy was conducted to determine the seasonal changes of soil respiration and the contribution of root respiration to soil respiration in Betula plaophylla forest in Changbai Mountain from May to September in 2004. Results indicated that the total soil respiration, root-severed soil respiration and the root respiration followed a similar seasonal trend, with a high rate in summer due to wet and high temperature and a low rate in spring and autumn due to lower temperature. The mean rates of total soil respiration, root-severed soil respiration and root respiration were 4.44, 2.30 and 2.14 μmol.m^-2.s^-1, respectively during the growing season, and they were all exponentially correlated with temperature. Soil respiration rate had a linear correlation with soil volumetric moisture. The Q10 values for total soil respiration, root-severed soil respiration and root respiration were 2,82, 2.59 and 3. 16, respectively. The contribution rate of root respiration to the total soil respiration was between 29.3% and 58.7% during the growing season, indicating that root is a major component of soil respiration. The annual mean rates of total soil respiration, root-severed soil respiration and root respiration were 1.96, 1.08, and 0.87 μmol.m^-2.s^-1, or 741.73 408.71, and 329.24 g.m^-2.a^-1, respectively. Root respiration contributed 44.4% to the annual total soil respiration. The relationship proposed for soil respiration with soil lemperature was useful for understanding and predicting potential changes in Changbai Mountain B. platyphylla forest ecosystem in response to forest management and climate change.
基金funded by National Science Foundation of China (No. 40606028)National Basic Research Programs of China (No. 2006CB400601and 2001CB409703)
文摘The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.
文摘Wood is the product of cambial activity in trees, and the seasonal activity style of cambium directly influences wood biomass production, structures and properties. The seasonal changes in the ultrastructure of the vascular cambium activity of Populus tonientosa Carr. planted in Beijing area were examined in shoot tissues collected during 15 months by means of transmission electron microscopy. Before xylem mother cells reactivated completely, the dividing fusiform cells in cambium and new phloem cells had appeared at the same time. The initiation of cambial activity may be related to the bud sprouting and the young leaf growth in shoots. More details about the ultrastructural changes of cambial cells at the onset of cambial activity have been gained. When the large vacuole in active cambial cells divided into smaller ones during the dormant phase, proteinaceous material that disappeared in active cambial cells refilled many of these small vactioles. In addition, lipid droplets and starch granules had the same cycles as proteinaceous material. The plasmalemma invaginations of fusiform cells were observed not only in active phase but also in dormancy. The endomembrane system consisting of nuclear membrane, endoplasmic reticulum (ER), dictyosomes and their secretory vesicles, changed in form and distribution at different phases during a cycle and performed important roles at the onset of active cambium and during the wall formation process of secondary xylem cells. The tangential walls remained relatively thin throughout the year but the radial walls thickened markedly when the cambium was dormant. During the transition from dormancy to activity, a partial autolysis occurred in the radial walls of the cambial cells, especially at the cell wall junctions. A notable feature of the cells at the onset of cambial activity was the thinning of the radial walls.
基金Supported by National Natural Science Foundation of China(30960017)Fund Project of Yunnan Education Department(09Y0360)Start Fund ofDali University(KY421140)~~
文摘[Objective]The research aimed to investigate the biological diversity of nematode-trapping fungi in the sediment of Erhai Lake.[Method]616 pieces of sediments were collected from Erhai Lake.The traditional classification and identification methods were used to isolate,purify and identify.[Result]3 genera and 22 species of nematode-trapping fungi were isolated.Arthrobotrys oligospora,A.musiformis and Dactylella leptospora were the dominant species,and their detection rates were 28.05%,16.04% and 8.92% respectively.By analyzing the diversity of nematode-trapping fungi in four seasons,it was found that the biological diversity was richer in summer,spring and autumn,and the diversity indexes were 2.59,2.47 and 2.34 respectively.The diversity index in winter was 1.48 and was lower.Species forming the adhesive nets were predominant;positive rate was 41.00%.[Conclusion]The rich nematode-trapping fungi resource existed in Erhai Lake,and its biological diversity had the seasonal variation characteristic.The nematode-trapping fungi which formed the viscous net were the dominant species in Erhai Lake.
基金supported by the National Natural Science Foundation of China(contract No.41006002,No.41206013 and No.41106004)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography of SOA(contract No.SOED1305)+3 种基金Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(contract No.KLOCAW1302)the Public Science and Technology Research Funds Projects of Ocean(contract No.200905001,No.201005019,and No.201205018)the Natural Science Foundation of State Ocean Administration(contract No.2012202,No.2012223,and No.2012224)Open Fund of Key Laboratory of Physical Oceanography,MOE(contract of Song jun)
文摘Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.
基金This research was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2–YW–309)the Major State Basic Research Development Program of China (973 Program No. 2004CB418507)
文摘Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007 to September 2008. The results show that the changes of aboveground biomass during the growing season are best described by the twice function curve model, whereas the changes of belowground biomass follow the exponential increase curve model. Both the organic carbon contents in the above- and belowground plant parts show significant positive linear correlations with the growing time, and the coefficients R2 are 0.983 and 0.746, respectively. The carbon accu-mulations of the above- and belowground plant parts during the growing season show the same dynamics as those of the biomass. However, the nitrogen contents and accumulation in C. lasiocarpa aboveground and belowground parts show exponential increase during the growing season. The dynamics of C. lasiocarpa phosphorus contents follows the twice function curve model, whereas the accumulation of phosphorus shows the linear increase. The ratios of C/N in different parts of C. lasiocarpa fit the negative linear relations with total nitrogen content in the growing season. Moreover, the ratios of C/P in C. lasiocarpa plant also fit the negative linear relations with total phosphorus content. The results show that nitrogen is the primary limiting nutrient for C. lasiocarpa growth as compared with carbon and phosphorus.
文摘[Objective] Study on the spatial distribution of summer precipitation patterns and interannual and interdecadal variability. [Method] The summer precipitation patterns were obtained from standard field of summer precipitation data for 160 observation stations in China during 1951 -2000 by the utilization of empirical orthogonal function (EOF), and characteristics of interannual and interdecadal variability were analyzed. [Result] The summer precipitation mainly distributes in eastern part of China; The 1 st, 2nd and 3rd EOF modes of spatial distribution are especially remarkable as well consistent with the results of previous reports about three rainfall patterns from analysis on the percentages of precipitation anomaly of summer. [Conclusion] There exists interannual and interdecadal variability for summer precipitation in China.
基金Supported by Research Project for Season Change in Jinan Region~~
文摘[Objective] The aim was to analyze changing characters of four seasons in Jiyang, providing references for farming and disaster prevention in the area. [Methed] Changing characters of initial time and lasting periods of four seasons in Jiyang for 30 years were analyzed from meteorological standpoint with weather information from 1981 to 2010 observed in surface meteorological observation in Jiyang. [Result] Recent 30 years, initial time of spring and winter in Jiyang were earlier than before, especially for spring. In contrast, initial time of summer and autumn were later, especially for autumn. In addition, periods of spring and winter declined and the latter changed more significantly. Meanwhile, periods of summer and autumn extended and rate of linear trend for summer period was 0.042 hou/year. [Conclusion] The research indicated that lasting days of summer extended significantly and of spring and winter shortened under the background of global warming.
基金the National Natural Science Foundation of China (No.40471121)the Field Station Foundation of the Chinese Academy,of Sciences.
文摘From studies undertaken during 1995-2004, annual budgets of CH4 emissions from natural wetlands and its temporal and spatial variations were examined throughout China, and various factors influencing CH4 emissions were also evaluated. The seasonal variation in CH4 emissions that increased with increasing plant growth reached its peak in August; decrease in the emissions was found in freshwater marshes but not in peatlands. Emissions were mainly controlled by temperature and depth of standing water. Low CH4 emissions at the early plant growing stages were not because of deficiency of organic C for CH4 production but because of low temperatures. Low temperatures not only reduced CH4 production but also stimulated CH4 oxidation by lowering the activity of other aerobic microbes which left more 02 in the rhizosphere for methanotrophs. Low summer temperatures (below 20 ℃) in the Qinghai-Tibetan Plateau lowered CH4 production and CH4 emission resulting in little or no seasonal variation of emissions. Diel and spatial variation in CH4 emissions depended on plant species. For plants that transport CH4 using the pressure-driven convective through-flow mechanism, diel variation in CH4 emissions was governed by diel variation of solar energy load (that produces temperature and vapor pressure differences within various plant tissues) and stomatal conductance. For plants that transport gases using the molecular diffusion mechanism only, the diel variation of CH4 emissions was because of differences in the magnitude of O2 produced through photosynthesis and then delivered into the rhizomes and/or rhizosphere for CH4 oxidation. Emergent plants could transport more CH4 than submerged plants because the former transport CH4 directly into the atmosphere rather than into water as do submerged plants where CH4 can be further be oxidized during its diffusion from water to the atmosphere. Emergent plants with high gas transport capacity could not only transport more CH4 into the atmosphere but also live in deeper water, which in turn would inundate more plant litter, resulting in increased availability of C for CH4 production. Annual CH4 emission from natural wetlands in China was estimated to be 1.76 Tg, up to 1.17 Tg of which was emitted from freshwater marshes. CH4 emission from freshwater marshes mainly occurred during the growing season and less than 8% was released during the freeze-thawing period despite the fact that thawing efficiently released CH4 fixed in ice column into the atmosphere.
基金Project supported by the National Natural Science Foundation of China (No. 30271072) and the Zhejiang Provincial Natural Science Foundation of China (No. 301250).
文摘Soil samples for conventional management (CM) and intensive management (IM) practices were taken over a year at 2-month intervals to determine the effect of management practices on soil organic carbon (SOC) and to quantify seasonal dynamics in SOC for bamboo (Phyllostachys pubescens Mazel ex H. de Lehaie) stands. The results with IM compared to CM showed large decreases in total organic carbon (TOC), microbial biomass carbon (MBC), water-soluble organic carbon (WSOC), and the MBC/TOC ratio in the soils. With all IM plots in the 0-20 cm depth across sampling periods, average decreases compared with CM were: TOC, 12.1%; MBC, 26.1%; WSOC, 29.3%; the MBC/TOC ratio, 16.1%; and the WSOC/TOC ratio, 20.0%. Due to seasonal changes of climate, seasonal variations were observed in MBC and WSOC. Soil MBC in the 0-20 cm depth in September compared to May were 122.9% greater for CM and 57.6% greater for IM. However, due primarily to soil temperature, soil MBC was higher during the July to November period, whereas because of soil moisture, WSOC was lower in July and January. This study revealed that intensive management in bamboo plantations depleted the soil C pool; therefore, soil quality with IM should be improved through application of organic manures.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(CAS)(No.KZCX2-EW-209)the CAS Strategy Pioneering Program(Nos.XDA10020104,XDA10020305)the State Oceanic Administration(SOA)Global Change and Air-Sea Interaction Program
文摘Seasonal variations of water masses in the East China Sea(ECS) and adjacent areas are investigated, based on historical data of temperature and salinity( T-S). Dynamic and thermodynamic mechanisms that affect seasonal variations of some dominant water masses are discussed, with reference to meteorological data. In the ECS above depth 600 m, there are eight water masses in summer but only five in winter. Among these, Kuroshio Surface Water(KSW), Kuroshio Intermediate Water(KIW), ECS Surface Water(ECSSW), Continental Coastal Water(CCW), and Yellow Sea Surface Water(YSSW) exist throughout the year. Kuroshio Subsurface Water(KSSW), ECS Deep Water(ECSDW), and Yellow Sea Bottom Water(YSBW) are all seasonal water masses, occurring from May through October. The CCW, ECSSW and KSW all have significant seasonal variations, both in their horizontal and vertical extents and their T-S properties. Wind stress, the Kuroshio and its branch currents, and coastal currents are dynamic factors for seasonal variation in spatial extent of the CCW, KSW, and ECSSW, whereas sea surface heat and freshwater fl uxes are thermodynamic factors for seasonal variations of T-S properties and thickness of these water masses. In addition, the CCW is affected by river runoff and ECSSW by the CCW and KSW.
基金funded by the National Natural Science Foundation of China (Grant Nos.31172426 and 30871931)the Ministry of Science and Technology of China (Grant Nos.2011BAD13B03 and JQ201009)+1 种基金the State Oceanic Administration of China (Grant No.200905020)supported by the Program for New Century Excellent Talents in University
文摘This study investigated the seasonal changes in carbon (C) and nitrogen (N) stable isotope values of several typical food sources of Apostichopus japonicus in a farm pond, including particulate organic matter (POM), macroalgae, benthic microalgae and animals such as nematode and copepod. The stable isotope technique was used to quantify relative contributions of various sources to the food uptake by A. japonicus. The results showed that significant changes occurred in the C and N stable isotope values of sea cucumber food sources due to the seasonality of micro-or macroalgae prosperity and the fluctuation of environmental conditions. The sea cucumber A. japonicus exhibited corresponding alterations in feeding strategy in response to the changes in food conditions. Calculation with a stable isotope mixing model showed that macroalgae was the principal food source for A. japonicus throughout the 1-yr investigation, with the relative contribution averaging 28.1% - 63.2%. The relative contributions of other food sources such as copepod and nematode, POM, benthic microalgae to the total food uptake by sea cucumber averaged 22.6% - 39.1%, 6.3% - 22.2%, 2.8% - 6.5%, and 2.8% - 4.2%, respectively. Together these results indicated that the seasonal changes in food sources led to the obvious temporal differences in the relative contribution of various food sources utilized by A. japonicus. Such findings provide the basic scientific information for improving the aquaculture techniques of A. japonicus, particularly for optimizing the food environment of A. japonicus culture in farm ponds.