Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the north...Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the northern middle and high latitudes. In this study, time series dataset of normalized difference vegetation index (NDVI) and corresponding ground-based information on vegetation, climate, soil, and solar radiation, together with an ecological process model, were used to explore the seasonal trends of terrestrial NPP and their geographical differences in China from 1982 to 1999. As the results,. seasonal total NPP in China showed a significant increase for all four seasons (spring, summer, autumn and winter) during the past 18 years. The spring NPP indicated the largest increase rate, while the summer NPP was with the largest increase in magnitude. The response of NPP to climate changes varied with different vegetation types. The increased NPP was primarily led by an advanced growing season for broadleaf evergreen forest, needle-leaf evergreen forest, and needle-leaf deciduous forest, whilst that was mainly due to enhanced vegetation activity (amplitude of growth cycle) during growing season for broadleaf deciduous forest, broadleaf and needle-leaf mixed forest, broadleaf trees with groundcover, perennial grasslands, broadleaf shrubs with grasslands, tundra, desert, and cultivation. The regions with the largest increase in spring NPP appeared mainly in eastern China, while the areas with the largest increase in summer NPP occurred in most parts of Northwestern China, Qinghai-Xizang Plateau, Mts. Xiaoxinganling-Changbaishan, Sanjiang Plain, Songliao Plain, Sichuan Basin, Leizhou Peninsula, part of the middle and lower Yangtze River, and southeastern mountainous areas of China. In autumn, the largest NPP increase appeared in Yunnan Plateau-Eastern Xizang and the areas around Hulun Lake. Such different ways of the NPP responses depended on regional climate attributes and their changes.展开更多
<正>北半球冬季气候变化的太阳强迫--Solar forcing of winter climatevariability in the Northern Hemisphere.Nature Geoscience,2011,Vol.4,No.11.太阳辐射变化对地表气候具有重要影响。观测表明,如果冬季太阳活动较弱,西风...<正>北半球冬季气候变化的太阳强迫--Solar forcing of winter climatevariability in the Northern Hemisphere.Nature Geoscience,2011,Vol.4,No.11.太阳辐射变化对地表气候具有重要影响。观测表明,如果冬季太阳活动较弱,西风也有所减弱。展开更多
Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. Th...Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. The variations of interdecadal heat transport over longitudes around 120° E are out of phase with those over around 90° E and over the Northcastern Pacific. The seasonal variations of heat transport were also discussed. It was found that most heat is transported in the lower layer of the troposphere from middle latitudes to higher latitudes. Over around 120° E and over around 120° W . the seasonal and interannual variations of heat transport across 32.5° N are apparent and in phase.展开更多
Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tengger Desert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic su...Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tengger Desert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic susceptibility and grain size, we inferred that the northwestern margin of East Asian monsoon region experienced abrupt climatic changes during the last deglaciation. Six oscillation events were identified: Oldest Dryas, Bolling, Older Dryas, Allerod, Intra-Allerod Cold Period (IACP) and Younger Dryas (YD). The summer monsoon was weaker during Oldest Dryas and Younger Dryas when the winter monsoon was stronger. However, during the B/A (Bolling/Allerod) period, the summer monsoon strengthened, reflected by magnetic susceptibility, when the winter monsoon also became strong, which is different from the paleoclimatic pattern established in the East Asian monsoon region. Furthermore, the summer monsoon was nearly in phase with the climate changes inferred from the oxygen isotopic records of Greenland ice cores. It could be speculated that the variations of the sea ice cover in the high latitudes of the North Hemisphere affected the high pressure of Asian continent and the changes of the winter monsoon inland. On the other hand, the sea ice cover variations might have indirectly caused the occurrence of ENSO events that has tightly been related to the summer monsoon in northwest margin of East Asian monsoon region.展开更多
The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China i...The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China in the past half century. It is found that temperature structures differ between seasons: a latitude temperature pattern in winter and a landform temperature pattern in summer, which indicate that the effect of landform on temperature structure is much stronger in summer than that in winter and the effect of latitudinal temperature is much stronger in winter than that in summer. The mechanisms of the seasonal difference in temperature structures are also discussed in this paper.展开更多
By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followe...By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, seq should be greater than 335K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105E ~ 120E,5N ~ 20N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.展开更多
Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 vari...Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 variations and drip water hydrochemistry in underground stream–developed caves. To study the relationship of underground stream, drip water, and cave air CO_2, monthly and daily monitoring of air CO_2 and of underground stream and drip water was performed in Xueyu Cave from 2012 to 2013.The results revealed that there was marked seasonal variation of air CO_2 and stream hydrochemistry in the cave. Daily variations of cave air CO_2, and of stream and drip water hydrochemistry, were notable during continuous monitoring.A dilution effect was observed by analyzing hydrochemical variations in underground stream and drip water after rainfall. High cave air CO_2 along with low p H and low δ^(13)C DIC in stream and drip water indicated that air CO_2 was one of the dominant factors controlling stream and drip water hydrochemistry on a daily scale. On a seasonal scale, stream flows may promote increased cave air CO_2 in summer; in turn, the higher cave air CO_2 could inhibit degassing of drip water and make calcite δ^(13)C more negative. Variation of calcite δ^(13)C(precipitated from drip water) was in reverse of monthly temperature, soil CO_2, and cave air CO_2. Therefore,calcite δ^(13)C in Xueyu Cave could be used to determine monthly changes outside the cave. However, considering the different precipitation rate of sediment in different seasons,it was difficult to use stalagmites to reconstruct environmental change on a seasonal scale.展开更多
The Madden–Julian Oscillation(MJO)is a dominant mode of tropical intraseasonal variability(ISV)and has prominent impacts on the climate of the tropics and extratropics.Predicting the MJO using fully coupled clima...The Madden–Julian Oscillation(MJO)is a dominant mode of tropical intraseasonal variability(ISV)and has prominent impacts on the climate of the tropics and extratropics.Predicting the MJO using fully coupled climate system models is an interesting and important topic.This paper reports upon a recent progress in MJO ensemble prediction using the climate system model of the Beijing Climate Center,BCC-CSM1.1(m);specifically,the development of three different initialization schemes in the BCC ISV/MJO prediction system,IMPRESS.Three sets of 10-yr hindcasts were separately conducted with the three initialization schemes.The results showed that the IMPRESS is able to usefully predict the MJO,but is sensitive to the initialization scheme used and becomes better with the initialization of moisture.In addition,a new ensemble approach was developed by averaging the predictions generated from the different initialization schemes,helping to address the uncertainty in the initial values of the MJO.The ensemble-mean MJO prediction showed significant improvement,with a valid prediction length of about 20 days in terms of the different criteria,i.e.,a correlation score beyond 0.5,a RMSE lower than 1.414,or a mean square skill score beyond 0.This study indicates that utilizing the different initialization schemes of this climate model may be an efficient approach when forming ensemble predictions of the MJO.展开更多
Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene dro...Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.展开更多
This study examined the rainfall around the middle and lower reaches of the Yangtze River and related atmospheric circulation by using NCEP reanalysis data. The purpose of this study is to analyze their decadal variat...This study examined the rainfall around the middle and lower reaches of the Yangtze River and related atmospheric circulation by using NCEP reanalysis data. The purpose of this study is to analyze their decadal variation and the relationship among rainfall, atmospheric circulation around East Asia and the ENSO episodes. Current results are presented as follows: (1) Very clear increasing trend of the rainfall around the middle and low reaches of the Yangtze River during the Meiyu period and June to July is found in the recent 15 years. Meanwhile, the geopotential height at 500 hPa around the Okhotsk Sea also holds similar increasing trend. It is noticeable that ENSO episodes tend to occur more frequently in the recent 15 years. (2) An index describing East Asian summer monsoon is well correlated with the SST in the Nino-3 region in preceding autumn in the recent 20 years but is not prior to the period. This means that the El Nino phenomenon exerts more impacts on East Asian summer monsoon recently. (3) The warm phase of PDO in the recent 20 years basically coincides with the increasing trend of the atmospheric circulation in East Asia.展开更多
Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio ...Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.展开更多
The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els fai...The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els failed to reproduce rainfall associated with the East Asian summer monsoon (EASM),and hence the seasonal cycle in eastern China,but provided reasonable results in Southwest (SW) and Northeast China (NE).The simula-tions produced reasonable results for the Yangtze-Huai (YH) Basin area,although the Meiyu phenomenon was underestimated in general.One typical regional phe-nomenon,a seasonal northward shift in the rain belt from early to late summer,was completely missed by most models.The long-term climate trends in rainfall over eastern China were largely underestimated,and the ob-served geographical pattern of rainfall changes was not reproduced by most models.Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex-treme Values) distributions.The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions,but reasonable values were calculated for the North China (NC) and NE regions.These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models.Nonetheless,models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.展开更多
The monthly mean suspended sediment concentration in the upper layer of the East China Seas was derived from the retrieval of the monthly binned SeaWiFS Level 3 data during 1998 to 2006. The seasonal variation and spa...The monthly mean suspended sediment concentration in the upper layer of the East China Seas was derived from the retrieval of the monthly binned SeaWiFS Level 3 data during 1998 to 2006. The seasonal variation and spatial distribution of the suspended sediment concentration in the study area were investigated. It was found that the suspended sediment distribution presents apparent spatial characteristics and seasonal variations, which are mainly affected by the resuspension and transportation of the suspended sediment in the study area. The concentration of suspended sediment is high inshore and low offshore, and river mouths are generally high concentration areas. The suspended sediment covers a much wider area in winter than in summer, and for the same site the concentration is generally higher in winter. In the Yellow and East China Seas the suspended sediment spreads farther to the open sea in winter than in summer, and May and October are the transitional periods of the extension. Winds, waves, currents, thermocline, halocline, pycnocline as well as bottom sediment feature and distribution in the study area are important influencing factors for the distribution pattern. If the 10rag L^-1 contour line is taken as an indicator, it appears that the transportation of suspended sediment can hardly reach 124^o00'E in summer or 126^o00'E in winter, which is due to the obstruction of the Taiwan Warm Current and the Kuroshio Current in the southern Yellow Sea and the East China Sea.展开更多
This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous ...This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing'anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China's territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing'anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a positive role in the mitigation of climate change.展开更多
The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal...The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.展开更多
By using,summer temperature data in 26 stations from 1951 to 2003, the variation characteristics of summer temperature in Northeast China (NET) were analyzed based on the background of climate wanning. The results s...By using,summer temperature data in 26 stations from 1951 to 2003, the variation characteristics of summer temperature in Northeast China (NET) were analyzed based on the background of climate wanning. The results showed that the warming in summer was 0.15~C/10a in Northeast China, which was higher than that on the global, Northern Hemisphere or Northeast Asia scale in the recent 50 years. The responses of NET to global warming were shown in 3 aspects mainly. Firstly, it became warm and the average temperature increased in summer; secondly, the temperature variability increased, which displayed the increase of climatic instability; thirdly, the disaster of low temperature decreased and high temperature damage increased obviously, but the disaster of low temperature still existed in some areas under global warming background, which would be worthy of notice further.展开更多
Factor analysis was used to investigate the changes of dry-wet climate in the dry season in Yunnan during 1961-2007 based on observed data from 15 stations.Three common factors were extracted from the 9 climatic facto...Factor analysis was used to investigate the changes of dry-wet climate in the dry season in Yunnan during 1961-2007 based on observed data from 15 stations.Three common factors were extracted from the 9 climatic factors.The results showed that the dry-wet climate has evidently changed since the early 1960s.The general trends in the changes of drywet climate were described as slight decrease in humidity and gradual enhancement in drought intensity.The climate during 1960s-1980s was under weak-medium drought.But since early 1990s,dry conditions have markedly strengthened and continued due to uneven temporal distribution of rainfall and climate warming.展开更多
Recently, study in past trends of climate variables gained significant consideration because of its contribution in adaptions and mitigation strategies for potential future changes in climate, primarily in the area of...Recently, study in past trends of climate variables gained significant consideration because of its contribution in adaptions and mitigation strategies for potential future changes in climate, primarily in the area of water resource management. Future interannual and inter-seasonal variations in maximum and minimum temperature may bring significant changes in hydrological systems and affect regional water resources. The present study has been performed to observe past(1970-2010) as well as future(2011-2100)spatial and temporal variability in temperature(maximum and minimum) over selected stations of Sutlej basin located in North-Western Himalayan region in India. The generation of future time series of temperature data at different stations is done using statistical downscaling technique. The nonparametric test methods, modified Mann-Kendall test and Cumulative Sum chart are used for detecting monotonic trend and sequential shift in time series of maximum and minimum temperature. Sen's slope estimator test is used to detect the magnitude of change over a period of time on annual and seasonal basis. The cooling experienced in annual TMax and TMin at Kasol in past(1970-2010) would be replaced by warming in future as increasing trends are detected in TMax during 2020 s and 2050 s and in TMin during 2020 s, 2050 s and 2080 s under A1 B and A2 scenarios. Similar results of warming are also predicted at Sunnifor annual TMin in future under both scenarios which witnessed cooling during 1970-2010. The rise in TMin at Rampur is predicted to be continued in future as increasing trends are obtained under both the scenarios. Seasonal trend analysis reveals large variability in trends of TMax and TMin over these stations for the future periods.展开更多
In this study, the authors simulate the East Asian climate changes in the mid-Pliocene (~3.3 to 3.0 Ma BP) with the Community Atmosphere Model version 3.1 (CAM3.1) and compare the simulated East Asian monsoon with pa...In this study, the authors simulate the East Asian climate changes in the mid-Pliocene (~3.3 to 3.0 Ma BP) with the Community Atmosphere Model version 3.1 (CAM3.1) and compare the simulated East Asian monsoon with paleoclimate data. The simulations show an obvious warming pattern in East Asia in the mid-Pliocene compared with the pre-industrial climate, with surface air temperature increasing by 0.5 4.0°C. In the warm mid-Pliocene simulation, the East Asian Summer Monsoon (EASM) becomes stronger, while the East Asian Winter Monsoon (EAWM) is similar relative to the pre-industrial climate. Compared with the paleoclimate data, our simulations depict the intensified EASM well but cannot reproduce the weakened EAWM. This model-data discrepancy may be attributed to the uncertainty in the reconstructed mid-Pliocene sea surface temperature.展开更多
The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in globa...The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in global climate change.In this study steric sea level,associated with temperature and salinity,in the GIN seas is examined based on analysis of the monthly temperature and salinity fields from Polar science center Hydrographic Climatology (PHC3.0).A method proposed by Tabata et al.is used to calculate steric sea level,in which,steric sea level change due to thermal expansion and haline contraction is termed as the thermosteric component (TC) and the halosteric component (SC),recpectively.Total steric sea level (TSSL) change is the sum of TC and SC.The study shows that SC is making more contributions than TC to the seasonal change of TSSL in the Greenland Sea,whereas TC contributes more in the Norwegian and the Iceland Seas.Annual variation of TSSL is larger than 50 mm over most regions of the GIN Seas,and can be larger than 200 mm at some locations such as 308 mm at 76.5 N,12.5 E and 246 mm at 77.5 N,17.5 W.展开更多
文摘Study on seasonal responses of terrestrial net primary production (NPP) to climate changes is to help understand feedback between climate systems and terrestrial ecosystems and mechanisms of increased NPP in the northern middle and high latitudes. In this study, time series dataset of normalized difference vegetation index (NDVI) and corresponding ground-based information on vegetation, climate, soil, and solar radiation, together with an ecological process model, were used to explore the seasonal trends of terrestrial NPP and their geographical differences in China from 1982 to 1999. As the results,. seasonal total NPP in China showed a significant increase for all four seasons (spring, summer, autumn and winter) during the past 18 years. The spring NPP indicated the largest increase rate, while the summer NPP was with the largest increase in magnitude. The response of NPP to climate changes varied with different vegetation types. The increased NPP was primarily led by an advanced growing season for broadleaf evergreen forest, needle-leaf evergreen forest, and needle-leaf deciduous forest, whilst that was mainly due to enhanced vegetation activity (amplitude of growth cycle) during growing season for broadleaf deciduous forest, broadleaf and needle-leaf mixed forest, broadleaf trees with groundcover, perennial grasslands, broadleaf shrubs with grasslands, tundra, desert, and cultivation. The regions with the largest increase in spring NPP appeared mainly in eastern China, while the areas with the largest increase in summer NPP occurred in most parts of Northwestern China, Qinghai-Xizang Plateau, Mts. Xiaoxinganling-Changbaishan, Sanjiang Plain, Songliao Plain, Sichuan Basin, Leizhou Peninsula, part of the middle and lower Yangtze River, and southeastern mountainous areas of China. In autumn, the largest NPP increase appeared in Yunnan Plateau-Eastern Xizang and the areas around Hulun Lake. Such different ways of the NPP responses depended on regional climate attributes and their changes.
文摘<正>北半球冬季气候变化的太阳强迫--Solar forcing of winter climatevariability in the Northern Hemisphere.Nature Geoscience,2011,Vol.4,No.11.太阳辐射变化对地表气候具有重要影响。观测表明,如果冬季太阳活动较弱,西风也有所减弱。
文摘Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied. It was found that there are interdecadal variations in heat ransport from middle latitudes to higher latitudes. The variations of interdecadal heat transport over longitudes around 120° E are out of phase with those over around 90° E and over the Northcastern Pacific. The seasonal variations of heat transport were also discussed. It was found that most heat is transported in the lower layer of the troposphere from middle latitudes to higher latitudes. Over around 120° E and over around 120° W . the seasonal and interannual variations of heat transport across 32.5° N are apparent and in phase.
基金Under the auspices of the National Natural Science Foundation of China (No. 40271114, 40301051)
文摘Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tengger Desert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic susceptibility and grain size, we inferred that the northwestern margin of East Asian monsoon region experienced abrupt climatic changes during the last deglaciation. Six oscillation events were identified: Oldest Dryas, Bolling, Older Dryas, Allerod, Intra-Allerod Cold Period (IACP) and Younger Dryas (YD). The summer monsoon was weaker during Oldest Dryas and Younger Dryas when the winter monsoon was stronger. However, during the B/A (Bolling/Allerod) period, the summer monsoon strengthened, reflected by magnetic susceptibility, when the winter monsoon also became strong, which is different from the paleoclimatic pattern established in the East Asian monsoon region. Furthermore, the summer monsoon was nearly in phase with the climate changes inferred from the oxygen isotopic records of Greenland ice cores. It could be speculated that the variations of the sea ice cover in the high latitudes of the North Hemisphere affected the high pressure of Asian continent and the changes of the winter monsoon inland. On the other hand, the sea ice cover variations might have indirectly caused the occurrence of ENSO events that has tightly been related to the summer monsoon in northwest margin of East Asian monsoon region.
基金supported NKBRSF,PR China,No.2002CB111507The National Key of Science and Technology,No.2004BA508B22+2 种基金the Chinese National Natural Science Foundation(90302006,90511026)the Hundred Talents Program(2004401,KZCX3-SW-339)of the Chinese Academy of Sciencesthe Project for 0utstanding Scientists(40121101)of the National Natural Science Foundation of China.
文摘The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China in the past half century. It is found that temperature structures differ between seasons: a latitude temperature pattern in winter and a landform temperature pattern in summer, which indicate that the effect of landform on temperature structure is much stronger in summer than that in winter and the effect of latitudinal temperature is much stronger in winter than that in summer. The mechanisms of the seasonal difference in temperature structures are also discussed in this paper.
基金National Scaling Project A The Scientific Experiment on South China Sea Monsoon
文摘By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, seq should be greater than 335K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105E ~ 120E,5N ~ 20N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.
基金supported by the National Natural Science Foundation of China (NO.41072192)Academician Foundation of Chongqing Science & Technology Commission (CSTC,2010BC7004CSTC,2013JCYIYS20001)
文摘Cave air CO_2 is a vital part of the cave environment. Most studies about cave air CO_2 variations are performed in caves with no streams; there are few studies to date regarding the relationship of cave air CO_2 variations and drip water hydrochemistry in underground stream–developed caves. To study the relationship of underground stream, drip water, and cave air CO_2, monthly and daily monitoring of air CO_2 and of underground stream and drip water was performed in Xueyu Cave from 2012 to 2013.The results revealed that there was marked seasonal variation of air CO_2 and stream hydrochemistry in the cave. Daily variations of cave air CO_2, and of stream and drip water hydrochemistry, were notable during continuous monitoring.A dilution effect was observed by analyzing hydrochemical variations in underground stream and drip water after rainfall. High cave air CO_2 along with low p H and low δ^(13)C DIC in stream and drip water indicated that air CO_2 was one of the dominant factors controlling stream and drip water hydrochemistry on a daily scale. On a seasonal scale, stream flows may promote increased cave air CO_2 in summer; in turn, the higher cave air CO_2 could inhibit degassing of drip water and make calcite δ^(13)C more negative. Variation of calcite δ^(13)C(precipitated from drip water) was in reverse of monthly temperature, soil CO_2, and cave air CO_2. Therefore,calcite δ^(13)C in Xueyu Cave could be used to determine monthly changes outside the cave. However, considering the different precipitation rate of sediment in different seasons,it was difficult to use stalagmites to reconstruct environmental change on a seasonal scale.
基金jointly supported by the National Basic Research Program of China(973 Program,Grant No.2015CB453203)the China Meteorological Special Project(Grant No.GYHY201406022)the LCS/CMA Open Funds for Young Scholars(2014)
文摘The Madden–Julian Oscillation(MJO)is a dominant mode of tropical intraseasonal variability(ISV)and has prominent impacts on the climate of the tropics and extratropics.Predicting the MJO using fully coupled climate system models is an interesting and important topic.This paper reports upon a recent progress in MJO ensemble prediction using the climate system model of the Beijing Climate Center,BCC-CSM1.1(m);specifically,the development of three different initialization schemes in the BCC ISV/MJO prediction system,IMPRESS.Three sets of 10-yr hindcasts were separately conducted with the three initialization schemes.The results showed that the IMPRESS is able to usefully predict the MJO,but is sensitive to the initialization scheme used and becomes better with the initialization of moisture.In addition,a new ensemble approach was developed by averaging the predictions generated from the different initialization schemes,helping to address the uncertainty in the initial values of the MJO.The ensemble-mean MJO prediction showed significant improvement,with a valid prediction length of about 20 days in terms of the different criteria,i.e.,a correlation score beyond 0.5,a RMSE lower than 1.414,or a mean square skill score beyond 0.This study indicates that utilizing the different initialization schemes of this climate model may be an efficient approach when forming ensemble predictions of the MJO.
基金Under the auspices of National Natural Science Foundation of China (No. 40603007)
文摘Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.
基金Research Fund for Tropical Oceans Project 973 of the Ministry of Science and Technology(2004CB418300) No. 2002DIB20067 from the Ministry of Science and Technology.
文摘This study examined the rainfall around the middle and lower reaches of the Yangtze River and related atmospheric circulation by using NCEP reanalysis data. The purpose of this study is to analyze their decadal variation and the relationship among rainfall, atmospheric circulation around East Asia and the ENSO episodes. Current results are presented as follows: (1) Very clear increasing trend of the rainfall around the middle and low reaches of the Yangtze River during the Meiyu period and June to July is found in the recent 15 years. Meanwhile, the geopotential height at 500 hPa around the Okhotsk Sea also holds similar increasing trend. It is noticeable that ENSO episodes tend to occur more frequently in the recent 15 years. (2) An index describing East Asian summer monsoon is well correlated with the SST in the Nino-3 region in preceding autumn in the recent 20 years but is not prior to the period. This means that the El Nino phenomenon exerts more impacts on East Asian summer monsoon recently. (3) The warm phase of PDO in the recent 20 years basically coincides with the increasing trend of the atmospheric circulation in East Asia.
基金supported by the Natural Science Foundation of China (No.41401044 and No.41310013)the key research projects of frontier sciences CAS (QYZDJ-SSW-DQC006)+1 种基金the Chinese Academy of Science (‘West Star’ project)the CAS/SAFEA international partnership program for creative research teams (KZZD-EW-TZ-06)
文摘Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.
基金supported by the National Basic Research Program of China 2009CB421401/2006CB400503the Chinese Meteorological Administration ProgramGYHY200706001
文摘The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els failed to reproduce rainfall associated with the East Asian summer monsoon (EASM),and hence the seasonal cycle in eastern China,but provided reasonable results in Southwest (SW) and Northeast China (NE).The simula-tions produced reasonable results for the Yangtze-Huai (YH) Basin area,although the Meiyu phenomenon was underestimated in general.One typical regional phe-nomenon,a seasonal northward shift in the rain belt from early to late summer,was completely missed by most models.The long-term climate trends in rainfall over eastern China were largely underestimated,and the ob-served geographical pattern of rainfall changes was not reproduced by most models.Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex-treme Values) distributions.The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions,but reasonable values were calculated for the North China (NC) and NE regions.These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models.Nonetheless,models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.
基金the National Key Basic Research Science Foundation (973 Project)‘Marine Physical Variations in Eastern Marginal Seas of China and Their Environmental Impacts’ (2005CB422303)the Program for New Century Excellent Talents in University (NCET-05-0592)
文摘The monthly mean suspended sediment concentration in the upper layer of the East China Seas was derived from the retrieval of the monthly binned SeaWiFS Level 3 data during 1998 to 2006. The seasonal variation and spatial distribution of the suspended sediment concentration in the study area were investigated. It was found that the suspended sediment distribution presents apparent spatial characteristics and seasonal variations, which are mainly affected by the resuspension and transportation of the suspended sediment in the study area. The concentration of suspended sediment is high inshore and low offshore, and river mouths are generally high concentration areas. The suspended sediment covers a much wider area in winter than in summer, and for the same site the concentration is generally higher in winter. In the Yellow and East China Seas the suspended sediment spreads farther to the open sea in winter than in summer, and May and October are the transitional periods of the extension. Winds, waves, currents, thermocline, halocline, pycnocline as well as bottom sediment feature and distribution in the study area are important influencing factors for the distribution pattern. If the 10rag L^-1 contour line is taken as an indicator, it appears that the transportation of suspended sediment can hardly reach 124^o00'E in summer or 126^o00'E in winter, which is due to the obstruction of the Taiwan Warm Current and the Kuroshio Current in the southern Yellow Sea and the East China Sea.
基金the Public Research Institute Fun-damental Research Foundation of the Institute of Atmospheric Environment of ChinaChina Meteororlgical Administration(No.2011IAE-CMA01)+1 种基金National Natural Science Foundation of China(No.41171199)the Special Climate Change Research Program Foundation of China Meteororlgical Administration(No.062700s010c01)for providing supports
文摘This paper reviews the studies and research on climate change impacts on the forest ecosystems in Northeast China. The results show that in the context of global and regional warming, the growing season of coniferous forests has been increasing at an average rate of 3.9 d per decade. Regional warming favors the growth of temperate broad-leaved forests and has a detrimental effect on the growth of boreal coniferous forests. Over the past hundred years, the forest edge of the cool temperate zone in the southern Daxing'anling region has retreated 140 km northward. From 1896 to 1986, the northern boundary of broad-leaved forests in Heilongjiang province has extended northwestward about 290 km. Future climatic changes (until 2060) may lead to the northern deciduous needle forests moving out of China's territory altogether. The occurrence cycles of pests and diseases have shortened; their distribution ranges have expanded. The life cycle of tent caterpillars (Malacosoma neustria testacea Motschulsky) has shortened from 14-15 years in the past to 8-10 years now. The pine caterpillar (Dendrolimus tabulaeformis Tsai et Liu), which has spread within western Liaoning province and the nearby areas, can now be found in the north and west. Lightning fires in the Daxing'anling region have significantly increased since 1987, and August has become the month when lightning fires occur most frequently. Overall, the net primary productivity (NPP) of forest in Northeast China has increased. The NPP in 1981 was around 0.27 Pg C, and increased to approximately 0.40 Pg C in 2002. With the current climate, the broad-leaved Korean pine forest ecosystem acts as a carbon sink, with a carbon sink capacity of 2.7 Mg C hm-2. Although the carbon sink capacity of the forest ecosystems in Northeast China has been weakened since 2003, the total carbon absorption will still increase. The forest ecosystems in Northeast China are likely to remain a significant carbon sink, and will play a positive role in the mitigation of climate change.
基金supported by the National Basic Research Program of China(2012CB955401 and 2009CB421406)the National Natural Science Foundation of China(41175072)
文摘The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.
基金U nder the auspices of A pplication Fund of A griculture Science and Technology Fruits of M inistry of Science andTechnology ofChina (N o.04EFN 217400411)
文摘By using,summer temperature data in 26 stations from 1951 to 2003, the variation characteristics of summer temperature in Northeast China (NET) were analyzed based on the background of climate wanning. The results showed that the warming in summer was 0.15~C/10a in Northeast China, which was higher than that on the global, Northern Hemisphere or Northeast Asia scale in the recent 50 years. The responses of NET to global warming were shown in 3 aspects mainly. Firstly, it became warm and the average temperature increased in summer; secondly, the temperature variability increased, which displayed the increase of climatic instability; thirdly, the disaster of low temperature decreased and high temperature damage increased obviously, but the disaster of low temperature still existed in some areas under global warming background, which would be worthy of notice further.
基金supported by the program(40675045) from the National Natural Science Foundation of China
文摘Factor analysis was used to investigate the changes of dry-wet climate in the dry season in Yunnan during 1961-2007 based on observed data from 15 stations.Three common factors were extracted from the 9 climatic factors.The results showed that the dry-wet climate has evidently changed since the early 1960s.The general trends in the changes of drywet climate were described as slight decrease in humidity and gradual enhancement in drought intensity.The climate during 1960s-1980s was under weak-medium drought.But since early 1990s,dry conditions have markedly strengthened and continued due to uneven temporal distribution of rainfall and climate warming.
基金financial support in the form of fellowship provided by University Grant Commission (UGC), Government of India to Mr. Dharmaveer Singh as Research Fellow for carrying out the research
文摘Recently, study in past trends of climate variables gained significant consideration because of its contribution in adaptions and mitigation strategies for potential future changes in climate, primarily in the area of water resource management. Future interannual and inter-seasonal variations in maximum and minimum temperature may bring significant changes in hydrological systems and affect regional water resources. The present study has been performed to observe past(1970-2010) as well as future(2011-2100)spatial and temporal variability in temperature(maximum and minimum) over selected stations of Sutlej basin located in North-Western Himalayan region in India. The generation of future time series of temperature data at different stations is done using statistical downscaling technique. The nonparametric test methods, modified Mann-Kendall test and Cumulative Sum chart are used for detecting monotonic trend and sequential shift in time series of maximum and minimum temperature. Sen's slope estimator test is used to detect the magnitude of change over a period of time on annual and seasonal basis. The cooling experienced in annual TMax and TMin at Kasol in past(1970-2010) would be replaced by warming in future as increasing trends are detected in TMax during 2020 s and 2050 s and in TMin during 2020 s, 2050 s and 2080 s under A1 B and A2 scenarios. Similar results of warming are also predicted at Sunnifor annual TMin in future under both scenarios which witnessed cooling during 1970-2010. The rise in TMin at Rampur is predicted to be continued in future as increasing trends are obtained under both the scenarios. Seasonal trend analysis reveals large variability in trends of TMax and TMin over these stations for the future periods.
基金supported by the National Basic Research Program of China(2009CB421406)the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-Q1-02)the National Natural Science Foundation of China(4090205 and 40975050)
文摘In this study, the authors simulate the East Asian climate changes in the mid-Pliocene (~3.3 to 3.0 Ma BP) with the Community Atmosphere Model version 3.1 (CAM3.1) and compare the simulated East Asian monsoon with paleoclimate data. The simulations show an obvious warming pattern in East Asia in the mid-Pliocene compared with the pre-industrial climate, with surface air temperature increasing by 0.5 4.0°C. In the warm mid-Pliocene simulation, the East Asian Summer Monsoon (EASM) becomes stronger, while the East Asian Winter Monsoon (EAWM) is similar relative to the pre-industrial climate. Compared with the paleoclimate data, our simulations depict the intensified EASM well but cannot reproduce the weakened EAWM. This model-data discrepancy may be attributed to the uncertainty in the reconstructed mid-Pliocene sea surface temperature.
基金funded by the National Natural Science Foundation of China (40806072)the National Science And Technology Supporting Plan (2007BAC03A0606)
文摘The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in global climate change.In this study steric sea level,associated with temperature and salinity,in the GIN seas is examined based on analysis of the monthly temperature and salinity fields from Polar science center Hydrographic Climatology (PHC3.0).A method proposed by Tabata et al.is used to calculate steric sea level,in which,steric sea level change due to thermal expansion and haline contraction is termed as the thermosteric component (TC) and the halosteric component (SC),recpectively.Total steric sea level (TSSL) change is the sum of TC and SC.The study shows that SC is making more contributions than TC to the seasonal change of TSSL in the Greenland Sea,whereas TC contributes more in the Norwegian and the Iceland Seas.Annual variation of TSSL is larger than 50 mm over most regions of the GIN Seas,and can be larger than 200 mm at some locations such as 308 mm at 76.5 N,12.5 E and 246 mm at 77.5 N,17.5 W.