期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
基于季节性(差分整合)自回归移动平均模型的广西乙类传染病发病情况预测 被引量:1
1
作者 韦雪梅 杨晓祥 +2 位作者 韦雪芹 李娟 袁宗祥 《内科》 2023年第3期209-214,共6页
目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月... 目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月报告发病数据作为测试集对模型进行测试。结果广西乙类传染病的发病情况呈季节性规律,最优预测模型为SARIMA(3,1,3)(2,0,0)_(12),其预测效果平均相对误差为7.99%,预测发病例数95%CI均包含了实际发病例数。结论SARIMA(3,1,3)(2,0,0)_(12)模型能较好地拟合广西乙类传染病的发病情况,可用于疫情的短期监测。 展开更多
关键词 广西壮族自治区 乙类传染病 季节性(差分合)自回归移动平均模型 疾病预测
下载PDF
基于季节自回归单整移动平均模型的电梯交通流递归预测方法 被引量:4
2
作者 宗群 赵占山 商安娜 《天津大学学报》 EI CAS CSCD 北大核心 2008年第6期653-659,共7页
针对电梯交通流预测提出了一种基于季节自回归单整移动平均(SARIMA)模型的递归预测方法.通过离线分析,对电梯交通流利用时间序列分析得到初始的SARIMA模型,引入异常值检测对训练数据中的异常值进行修正,利用修正的序列得到电梯交通流SAR... 针对电梯交通流预测提出了一种基于季节自回归单整移动平均(SARIMA)模型的递归预测方法.通过离线分析,对电梯交通流利用时间序列分析得到初始的SARIMA模型,引入异常值检测对训练数据中的异常值进行修正,利用修正的序列得到电梯交通流SARIMA模型;在线预测时,将离线得到修正的SARIMA模型转化为状态空间形式,通过Kalman滤波实时调整状态向量,实现电梯交通流的实时在线预测.仿真表明该方法具有很好的预测性能,且运行时间短,满足实时性的要求. 展开更多
关键词 电梯交通流预测 季节自回归移动平均模型 异常值检测 KALMAN滤波 状态空间模型
下载PDF
基于季节性差分整合移动平均自回归模型的城市公交短期客流预测 被引量:3
3
作者 李炜聪 潘福全 +3 位作者 胡盼 张丽霞 杨晓霞 杨金顺 《济南大学学报(自然科学版)》 CAS 北大核心 2022年第3期308-314,共7页
为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本... 为了解决公交车辆过载及空车浪费资源并存问题,提高城市公交服务质量水平,基于公交客流季节性波动及周期性变化特征,构建季节性差分整合移动平均自回归模型,并对城市公交短期客流进行预测;以山东省青岛市K1路公交线路刷卡数据为模型样本,对非平稳的客流时间序列进行1阶7步差分处理,对差分后的数据进行平稳性检验;通过相对信息量计算,确定预测模型中未知参数,对差分处理后的时间序列进行标准化残差检验,检验结果为白噪声序列,得到周期为7的季节性差分整合移动平均自回归预测模型;利用预测模型对2019年7—12月公交客流量进行预测与误差分析。结果表明,模型预测的平均相对误差为4.02%,最大相对误差为8.36%,模型预测精度较高,适用于青岛市公交短期客流量预测。 展开更多
关键词 交通预测 短期客流预测 季节性差分移动平均自回归模型 城市公交 平稳性检验
下载PDF
自回归求和移动平均乘积季节模型在西安地区出生缺陷预测中的应用 被引量:11
4
作者 张丽 米白冰 +7 位作者 相晓妹 宋辉 董敏 张水平 章琦 王玲玲 屈鹏飞 党少农 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2017年第3期371-374,426,共5页
目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟... 目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟合数据进行比较,评价模型的预测性能,并预测西安市2016年的出生缺陷发生率。结果西安市出生缺陷的发生率具有一定的趋势及季节性,建立了ARIMA(0,0,1)(0,1,1)12乘积季节模型,利用2015年9月至12月拟合值与实际出生缺陷发生率比较,绝对误差的平均9.5,相对误差的平均0.084,提示ARIMA(0,0,1)(0,1,1)12乘积季节模型具有较佳的预测能力。预测2016年西安市出生缺陷发生率与2015年接近,总体略有抬升,但峰值下降。结论 ARIMA(0,0,1)(0,1,1)12乘积季节模型可用于西安市出生缺陷发生率的预测。 展开更多
关键词 出生缺陷 自回归求和移动平均乘积季节模型 预测
下载PDF
长沙市流行性腮腺炎季节性自回归移动平均模型预测研究 被引量:3
5
作者 刘琳玲 刘如春 +5 位作者 陈田木 张本忠 李亚曼 胡伟红 谢知 赵锦 《中国全科医学》 CAS 北大核心 2017年第2期187-190,共4页
目的采用季节性自回归移动平均(SARIMA)模型预测长沙市流行性腮腺炎发病数。方法收集2005—2015年长沙市报告的流行性腮腺炎病例数据,将2005—2014年数据作为建模数据,将2015年数据作为验证数据,开展SARIMA模型建立与验证研究,并对2016... 目的采用季节性自回归移动平均(SARIMA)模型预测长沙市流行性腮腺炎发病数。方法收集2005—2015年长沙市报告的流行性腮腺炎病例数据,将2005—2014年数据作为建模数据,将2015年数据作为验证数据,开展SARIMA模型建立与验证研究,并对2016年流行性腮腺炎发病数进行预测。结果 SARIMA(3,0,0)×(1,0,0)_(12)模型可以很好地拟合实际数据,模型的展开式为:Y_t=222.545+1.225Y_(t-1)-0.713Y_(t-2)+0.291Y_(t-3)+0.366Y_(t-12)-0.448Y_(t-13)+0.261Y_(t-14)-0.107Y_(t-15)+a_t。将验证数据与预测数据进行相关性分析,结果显示呈显著性相关(r=0.61,P<0.001)。SARIMA模型预测2016年长沙市全年发病数将达到3 032例,平均月病例数为253例。结论 SARIMA模型可以用于流行性腮腺炎发病数预测,长沙市2016年流行性腮腺炎疫情仍处于高发态势。 展开更多
关键词 流行性腮腺炎 时间序列 季节自回归移动平均模型 预测
下载PDF
基于SARIMA模型的上海市中心城区共享单车需求预测
6
作者 范棪堃 《信息与电脑》 2024年第5期210-214,共5页
无桩式共享单车的出现与推广在减少碳排放的同时,带来了道路拥堵问题。如何高效、准确地进行交通流量预测已经成为人们关注的热点。利用2016年8月上海市中心城区摩拜共享单车数据,利用季节性差分自回归移动平均模型(Seasonal Autoregres... 无桩式共享单车的出现与推广在减少碳排放的同时,带来了道路拥堵问题。如何高效、准确地进行交通流量预测已经成为人们关注的热点。利用2016年8月上海市中心城区摩拜共享单车数据,利用季节性差分自回归移动平均模型(Seasonal Autoregressive Integrated Moving Average Model,SARIMA模型)进行模拟和预测,再通过折线图的方式揭示共享单车需求量与时间之间的变化关系。研究发现,SARIMA(0,1,3)×(0,1,0)_(84)模型能够有效预测上海市中心城区共享单车的需求量。预测交通流量,可以缓解城市主干道的拥堵状况,提高市民的生活质量。同时,预测通勤需求可以平衡供需关系,为运营企业和用户提供更高效的服务,为政府规划提供决策依据。 展开更多
关键词 季节性差分自回归移动平均模型(SARIMA模型) 交通流量预测 共享
下载PDF
求和自回归移动平均乘积季节模型在北京市非职业性一氧化碳中毒事件预测中的应用
7
作者 张永强 王薇 +4 位作者 孙秀梅 杜世昌 卜凡 高群 孙鑫贵 《中国工业医学杂志》 CAS 2024年第1期83-86,F0003,共5页
构建时间序列分析求和自回归移动平均(ARIMA)乘积季节模型,模拟并预测北京市非职业性一氧化碳(CO)中毒事件的发生趋势。采用SPSS 21.0软件对2012年1月—2022年9月北京市发生的非职业性CO中毒事件进行ARIMA模型拟合,预测2022年10月—2023... 构建时间序列分析求和自回归移动平均(ARIMA)乘积季节模型,模拟并预测北京市非职业性一氧化碳(CO)中毒事件的发生趋势。采用SPSS 21.0软件对2012年1月—2022年9月北京市发生的非职业性CO中毒事件进行ARIMA模型拟合,预测2022年10月—2023年9月各月份发生CO中毒事件的次数,并采用2022年10月—2023年8月实际发生数进行验证。结果显示,构建的ARIMA(3,1,3)(2,1,1)12模型平稳R^(2)=0.39,决定系数R2=0.54,均方根误差(RMSE)3.06,均值绝对百分比误差(MAPE)84.78,平均绝对误差(MAE)2.23,贝叶斯信息准则(BIC)值2.73;杨-博克斯(Ljung-Box)统计量Q=7.58,P=0.58,残差序列为白噪声序列。总体而言,模型拟合适度较好。2022年10月—2023年8月各月份CO中毒发生次数实际值均在预测值95%置信区间,表现出较好的预测效果。拟合ARIMA(3,1,3)(2,1,1)12模型能很好地预测北京市非职业性CO中毒事件的发生,可用于中毒事件的监测预警工作。 展开更多
关键词 非职业性一氧化碳(CO)中毒 时间序列分析 求和自回归移动平均(ARIMA)乘积季节模型 预测
原文传递
基于SARIMA和SVR组合模型的转向架系统寿命评估
8
作者 师蔚 范乔 +2 位作者 杨洋 胡定玉 廖爱华 《铁道机车车辆》 北大核心 2024年第1期157-163,共7页
随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持... 随着地铁运营时间和里程的增加,地铁车辆逐渐接近其理论寿命,为确保车辆运行安全性,需对其重要子系统进行健康状态及剩余寿命评估。文中选取车辆转向架系统作为研究对象,提出了一种基于协方差优选法的季节性回归移动平均(SARIMA)和支持向量回归(SVR)的组合模型对转向架寿命进行评估。首先,将车辆转向架系统历史故障率转化为健康指数,然后基于协方差优选法将SARIMA和SVR进行赋权组合,根据转向架系统历史健康指数进行预测,最后建立历史和预测的健康指数与运行时间的数学模型,分析得到转向架系统的剩余寿命。以某地铁车辆转向架系统为例进行算例分析及验证,结果表明组合模型可更准确地预测其健康状态,为有关维修部门开展维修维护策略提供理论依据,估计得出其剩余寿命,为车辆寿命后期退役及延寿决策提供理论数据分析支撑。 展开更多
关键词 转向架系统 寿命预测 季节回归移动平均和支持向量回归(SARIMA和SVR) 组合模型 协方差优选法
下载PDF
应用ARIMA乘积季节模型对耐碳青霉烯类肺炎克雷伯菌流行趋势预测效果研究 被引量:1
9
作者 张绮萍 季聪华 +1 位作者 陆锦琪 王霄腾 《中国医院统计》 2023年第3期173-178,共6页
目的研究自回归求和移动平均(ARIMA)乘积季节模型在耐碳青霉烯类肺炎克雷伯菌(CRKP)流行趋势预测中的应用价值,为掌握医院CRKP流行趋势及制定防控对策提供参考。方法基于2016—2021年嘉兴市某三级甲等综合性医院CRKP月检出株数,应用SPSS... 目的研究自回归求和移动平均(ARIMA)乘积季节模型在耐碳青霉烯类肺炎克雷伯菌(CRKP)流行趋势预测中的应用价值,为掌握医院CRKP流行趋势及制定防控对策提供参考。方法基于2016—2021年嘉兴市某三级甲等综合性医院CRKP月检出株数,应用SPSS 26.0软件构建ARIMA乘积季节模型,以2022年实际CRKP月检出株数作为评估模型的样本与预测值进行比较,评价模型的预测效果。结果2016—2021年该院CRKP检出总数呈下降趋势,发病集中在每年的7—9月,9月为发病高峰,具有周期性和季节性。拟合的ARIMA(0,1,2)(0,1,0)12模型贝叶斯信息准则(BIC)为0.43,平均绝对百分误差(MAPE)为16.54,模型残差序列的Ljung-Box检验差异无统计学意义(Q=11.06,P=0.81),残差序列为白噪声,说明该模型拟合良好,确定为最优模型。2022年1—12月CRKP月检出株数用以验证模型的预测效果,结果显示实际发病趋势与预测曲线图较为吻合,实际值均位于预测值的95%置信区间内,预测误差-33.33%~25.00%,平均相对误差15.56%,说明模型的预测效果较好。结论ARIMA乘积季节模型能较好地拟合该院CRKP检出株数的时间变化,可用于CRKP流行趋势的短期预测和动态分析,为医院CRKP感染的早期预警和防控提供理论依据。 展开更多
关键词 自回归求和移动平均模型 乘积季节模型 耐碳青霉烯类肺炎克雷伯菌 预测
下载PDF
基于SARIMA模型的城市热岛季节性时序预测研究 被引量:2
10
作者 管亚平 《科学技术创新》 2023年第7期111-114,共4页
针对目前出现的极端气候问题,本研究引入SARIMA季节性时序预测模型来预测城市热岛。首先利用单窗算法进行地表温度反演并进行精度验证;然后采用SARIMA模对地表温度进行拟合和未来温度变化预测。基于季节性差分自回归移动平均模型,结果表... 针对目前出现的极端气候问题,本研究引入SARIMA季节性时序预测模型来预测城市热岛。首先利用单窗算法进行地表温度反演并进行精度验证;然后采用SARIMA模对地表温度进行拟合和未来温度变化预测。基于季节性差分自回归移动平均模型,结果表明SARIMA模型的城市热岛季节性时序拟合和预测效果具有较高的可靠性和准确性。 展开更多
关键词 SARIMA模型 时序预测 地表温度 城市热岛 季节性差分自回归移动平均模型
下载PDF
基于季节自回归移动平均模型的新疆细菌性痢疾发病趋势预测 被引量:1
11
作者 王婷 贺湘焱 《公共卫生与预防医学》 2023年第5期30-34,共5页
目的 分析新疆2005—2018年细菌性痢疾的流行特征,探讨季节自回归移动平均模型预测新疆细菌性痢疾发病规律的可行性和适用性,为预防和控制菌痢的决策工作提供科学依据。方法 采用描述性分析对菌痢流行特征进行分析,利用Python软件构建SA... 目的 分析新疆2005—2018年细菌性痢疾的流行特征,探讨季节自回归移动平均模型预测新疆细菌性痢疾发病规律的可行性和适用性,为预防和控制菌痢的决策工作提供科学依据。方法 采用描述性分析对菌痢流行特征进行分析,利用Python软件构建SARIMA模型并对发病趋势进行预测。结果 2005—2018年新疆菌痢平均年报告发病率为35.71/10万,发病高峰集中在6~10月。各年龄组菌痢发病率的差异有统计学意义(χ^(2)=145 605.90,P<0.001),其中0~5岁和>60岁年龄组患病所占比例较大。所得模型为SARIMA(0,1,2)(0,1,1)12,参数均有统计学意义(P<0.05),对残差序列进行Ljung-Box Q检验(Ljung-Box Q test, LBQ),差异无统计学意义(LBQ=0.68,P=0.41),即残差序列为白噪声。预测值与观测值的相对误差范围为3.29%~75.32%,平均相对误差为11.34%。采用构建的最优SARIMA模型,以2005—2018年菌痢月发病率数据为基础,对2019年的发病趋势进行预测,显示其发病率呈下降的态势。结论 SARIMA(0,1,2)(0,1,1)12模型预测新疆菌痢发病率有较好的精确度,可以用于疾病的中期预测。 展开更多
关键词 季节自回归移动平均模型 菌痢 发病预测
原文传递
ARIMA模型在基层血站单采血小板临床需求量预测中的可行性分析
12
作者 吕艺通 刘志泉 +3 位作者 莫巧频 王东 谢庆欢 刘曼丽 《中国实用医药》 2023年第23期144-148,共5页
目的 探讨自回归移动平均乘积季节(ARIMA)模型在基层血站单采血小板临床需求量预测中的可行性,为血站制定科学合理的单采血小板招募计划和库存管理提供科学依据。方法 应用SPSS23.0统计学软件对顺德区中心血站2012年1月~2022年6月的单... 目的 探讨自回归移动平均乘积季节(ARIMA)模型在基层血站单采血小板临床需求量预测中的可行性,为血站制定科学合理的单采血小板招募计划和库存管理提供科学依据。方法 应用SPSS23.0统计学软件对顺德区中心血站2012年1月~2022年6月的单采血小板临床使用数据构建ARIMA模型,用所建模型预测2022年7月~2023年3月的单采血小板使用量并与实际使用量进行比较,评价模型拟合效果。结果 建立的最优模型为ARIMA(2, 1, 0)(0, 1, 1)12,残差序列自相关函数(ACF)和偏自相关函数(PACF)落在95%CI内;Ljung-Box Q统计量为24.941,差异无统计学意义(P>0.05),说明残差是随机分布的,残差不存在相关性,为白噪声序列,模型检验通过。应用模型ARIMA(2, 1, 0)(0, 1, 1)12对顺德区2022年7月~2023年3月的单采血小板临床使用量进行预测,预测结果与实际值均在95%CI内,平均相对误差为7.06%,预测值与实际值的曲线趋势基本一致,模型拟合效果较好。结论 ARIMA模型可用于顺德区单采血小板临床需求量的短期预测,为单采血小板的招募和库存管理提供科学依据。 展开更多
关键词 自回归移动平均乘积季节模型 基层血站 采血小板 需求量预测
下载PDF
基于DWT-SARIMA-LSTM的流感预测模型研究
13
作者 胡兆辉 陈兆学 《软件工程》 2024年第5期56-61,共6页
为提高流感预测模型的准确率,针对流感数据的季节性与波动性特点,提出利用离散小波分解(DWT)、季节性自回归综合移动平均模型(SARIMA)和长短期记忆神经网络(LSTM)综合建模,构建DWT-SARIMA-LSTM混合预测模型。首先,将流感数据分解为高频... 为提高流感预测模型的准确率,针对流感数据的季节性与波动性特点,提出利用离散小波分解(DWT)、季节性自回归综合移动平均模型(SARIMA)和长短期记忆神经网络(LSTM)综合建模,构建DWT-SARIMA-LSTM混合预测模型。首先,将流感数据分解为高频成分与低频成分,对低频成分使用SARIMA模型、高频成分使用LSTM模型分别进行预测;其次,将预测值融合得到最终的预测结果;最后,构建流行控制图预警模型。使用从中国香港卫生署官网获得的中国香港地区2010—2019年的流感数据对模型进行预测和验证,其MAE为0.3427,MAPE为8.0973%,RMSE为0.4632,预警模型的准确率为100%,该模型较于如ARIMA-LSTM等其他混合模型有更高的预测精度。 展开更多
关键词 流感预测 小波分解 季节自回归综合移动平均模型 长短期记忆神经网络
下载PDF
使用快速傅里叶变换优化周期参数的EMD-FFT-SARIMA光伏发电预测模型
14
作者 熊川羽 廖晓红 +5 位作者 何诗英 陈然 王巍 臧楠 王瀛 肖梦涵 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期117-123,共7页
根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得... 根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得到的各固有本征模态函数(IMF)分量周期计算问题,提出加入快速傅里叶变换(FFT)的周期计算方法,建立EMD-FFT-SARIMA光伏发电功率预测模型。再将每个IMF对应的预测结果进行叠加重构得到最终的预测结果。通过预测结果的误差计算可以发现,加入FFT环节后均方根误差(RMSE)从120.6 MW下降到19.3 MW,平均绝对误差(MAE)从52.87 MW下降到12.3 MW。 展开更多
关键词 经验模式分解 季节性差分自回归移动平均模型 周期计算 固有本征模态函数信号分量 快速傅里叶变换 光伏发电预测
下载PDF
乘积季节ARIMA模型在食源性疾病预测中的应用 被引量:15
15
作者 张爱红 周培 +2 位作者 申铜倩 彭志行 陈峰 《中国卫生统计》 CSCD 北大核心 2014年第1期68-69,73,共3页
目的探讨应用乘积季节自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)预测如东县食源性疾病发病的可行性,为食源性疾病的预防和控制提供依据。方法基于2004年1月至2010年12月食源性疾病人数建立乘积季节ARIM... 目的探讨应用乘积季节自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)预测如东县食源性疾病发病的可行性,为食源性疾病的预防和控制提供依据。方法基于2004年1月至2010年12月食源性疾病人数建立乘积季节ARIMA模型,用2011年食源性疾病资料验证模型的预测效果,用所得模型预测2012年食源性疾病发病人数。结果 ARIMA(0,1,1)×(0,1,1)12较好地拟合了既往时间段食源性疾病发病人数的时间序列,拟合平均相对误差为2.7%,预测2012年如东县食源性疾病发病总人数为64人。结论乘积季节ARIMA模型可以较好地拟合食源性疾病的时间变化趋势,并用于预测未来的食源性疾病,是一种短期预测精度较高的预测模型。 展开更多
关键词 乘积季节自回归求和移动平均模型 预测 食源性疾病
下载PDF
ARIMA乘积季节模型在上海市甲肝发病预测中的应用 被引量:29
16
作者 朱奕奕 冯玮 +1 位作者 赵琦 徐飚 《复旦学报(医学版)》 CAS CSCD 北大核心 2012年第5期460-464,共5页
目的应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型分析季节性时间序列,建立上海市病毒性甲型肝炎发病率的预测模型。方法利用上海市1990年至2011年甲肝按月发病数的历史疫情数据,采用非条件最... 目的应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型分析季节性时间序列,建立上海市病毒性甲型肝炎发病率的预测模型。方法利用上海市1990年至2011年甲肝按月发病数的历史疫情数据,采用非条件最小二乘法估计模型参数,模型阶数确定后,建立甲肝按月发病数ARIMA乘积季节预测模型。结果非季节和季节移动平均的参数分别是0.6341和0.9999,季节自回归的参数是0.4059,t检验的P值均<0.0001,方差估计值是0.1593,AIC=282.1478,SBC=292.7242,对建立的模型进行残差的白噪声检验,χ2检验统计量的P值均>0.05,据此建立ARIMA(0,1,1)(1,1,1)12NOINT乘积季节模型,模型表达式(1-0.405 9B12)(1-B)(1-B12)Yt=(1-0.634 1B)(1-0.999 9B12)εt,并开展上海市甲肝发病数的预测。结论 ARIMA(0,1,1)(1,1,1)12NOINT乘积季节模型可用于预测上海市病毒性甲型肝炎发病的季节模型。 展开更多
关键词 自回归求和移动平均(ARIMA)乘积季节模型 时间序列 甲肝
下载PDF
时间序列季节调整方法在中国的发展:PBC版X-12-ARIMA 被引量:5
17
作者 谢波峰 章丽盛 《计算机工程与设计》 CSCD 北大核心 2008年第4期991-992,997,共3页
中国人民银行(PBC)版X-12-ARIMA软件是基于中国特点而定制的时间序列季节调整软件。通过总结时间序列季节调整方法的特点以及相应软件在国外的发展,针对我国应用的特点,尤其是春节因素的考虑,在解剖X-12-ARIMA方法原理的基础上,在春节... 中国人民银行(PBC)版X-12-ARIMA软件是基于中国特点而定制的时间序列季节调整软件。通过总结时间序列季节调整方法的特点以及相应软件在国外的发展,针对我国应用的特点,尤其是春节因素的考虑,在解剖X-12-ARIMA方法原理的基础上,在春节因素计算方法、软件应用界面以及用户使用帮助等3个主要方面加以改进,具有数据导入、调整设置文件、运行方式以及结果输出4方面的特色。 展开更多
关键词 时间序列 季节方法 X12方法 自回归移动平均模型 春节因素
下载PDF
基于ARIMA乘积季节模型的科室级常规耗材需求量预测研究 被引量:3
18
作者 白玲 郭晓伟 马莉 《中国医疗设备》 2021年第1期123-126,共4页
目的探讨季节性因素的时间序列分析方法在科室常规耗材库管理中的应用,分析和预测未来一段时间内医用常规耗材的使用需求。方法采用整合移动平均自回归(Autoregressive Integrated Moving Average,ARIMA)乘积季节模型对北京市某医院某... 目的探讨季节性因素的时间序列分析方法在科室常规耗材库管理中的应用,分析和预测未来一段时间内医用常规耗材的使用需求。方法采用整合移动平均自回归(Autoregressive Integrated Moving Average,ARIMA)乘积季节模型对北京市某医院某科室某品牌注射器2014年1月至2018年12月的逐月使用量进行预测。结果ARIMA(0,1,2)(0,1,1)12模型的平均绝对百分比误差为5.308,在实际业务可接受范围之内,因此模型拟合效果较好,预测结果接近实际产生值。结论ARIMA(0,1,2)(0,1,1)12模型能够准确的进行该类医用常规耗材的短期预测,可应用于医院物资管理信息系统中,实现对医院耗材的合理管控,并为科室制定医用耗材的资金支出预算提供可靠依据。 展开更多
关键词 时间序列分析 数据预测 常规医用耗材 移动平均自回归 乘积季节模型
下载PDF
ARIMA乘积季节模型在重庆市流行性乙型脑炎预测中的应用 被引量:1
19
作者 周春碚 姚宁 《重庆医科大学学报》 CSCD 北大核心 2017年第10期1345-1349,共5页
目的:应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型预测重庆市流行性乙型脑炎(简称乙脑)发病数。方法:利用R软件对重庆市2006年1月到2015年6月乙脑报告病例数进行ARIMA模型建模拟合,选择预测... 目的:应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型预测重庆市流行性乙型脑炎(简称乙脑)发病数。方法:利用R软件对重庆市2006年1月到2015年6月乙脑报告病例数进行ARIMA模型建模拟合,选择预测模型进行相互比较确定最优模型。用2015年7至12月实际报告病例数与拟合值的比较来评价模型的预测效果,并对2016至2017年重庆市乙脑报告发病数进行预测。结果:重庆市乙脑发病人数呈逐年下降趋势,报告病例具有明显季节分布特征,ARIMA(0,0,1)×(1,1,2)12模型很好地拟合了时间序列,该模型赤池信息量准则(Akaike information criterion,AIC)、许瓦兹贝叶斯准则(Schwarz Bayesian criterion,SBC)值均最小且预测值与实际值的平均相对误差为0.12,平均绝对百分比误差为7.81%。进一步用该模型预测重庆市2016至2017年乙脑病例数分别为35例和32例,发病高峰仍是7至8月。结论:利用ARIMA乘积季节模型对乙脑发病数拟合较好,短期预测结果良好;与2015年比较,预测2016至2017年乙脑报告发病数略微减少。 展开更多
关键词 流行性乙型脑炎 自回归求和移动平均乘积季节模型 预测
下载PDF
乘积季节ARIMA模型的建立及其在河南省甲型病毒性肝炎发病数预测中的应用 被引量:1
20
作者 李军 史鲁斌 肖占沛 《中国卫生产业》 2015年第23期26-28,36,共4页
目的建立乘积季节自回归移动平均(ARIMA)模型,观察其对河南省甲型病毒性肝炎(甲肝)疫情预测的可行性。方法利用河南省2008—2013年分月的甲肝疫情监测资料建立乘积季节ARIMA模型,利用2014年1—12月的甲肝疫情资料评价该模型的预测效能... 目的建立乘积季节自回归移动平均(ARIMA)模型,观察其对河南省甲型病毒性肝炎(甲肝)疫情预测的可行性。方法利用河南省2008—2013年分月的甲肝疫情监测资料建立乘积季节ARIMA模型,利用2014年1—12月的甲肝疫情资料评价该模型的预测效能。结果河南省2008—2013年甲肝发病呈现明显的季节效应,且发病数呈现逐年减少的趋势;乘积季节ARIMA(1,1,0)(2,1,2)模型能较好地拟合既往的甲肝报告病例数,且对2014年1—12月份按月报告的甲肝病例数的预测值与实际值基本吻合。结论乘积季节ARIMA模型能较好模拟、预测河南省甲肝的发病情况。 展开更多
关键词 自回归移动平均模型 乘积季节自回归移动平均模型 甲型病毒性肝炎 疾病预测
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部