From March 2004 to February 2005,seasonal variations in lipid content and fatty acid composition of gonad of the cockle Fulvia mutica(Reeve) were studied on the eastern coast of China in relation to the reproductive c...From March 2004 to February 2005,seasonal variations in lipid content and fatty acid composition of gonad of the cockle Fulvia mutica(Reeve) were studied on the eastern coast of China in relation to the reproductive cycle and environment conditions(e.g.,temperature and food availability).Histological analysis as well as lipid and fatty acid analyses were performed on neutral and polar lipids of the gonad.Results showed that gametogenesis occurred in winter and spring at the expense of lipids previously accumulated in summer and autumn,whereas spawning occurred in summer(20.4-24.6℃).The seasonal variation in lipid content was similar to that of the mean oocyte diameter.In both neutral and polar lipids,the 20:5n-3 and 22:6n-3 levels were relatively higher than saturated fatty acids,and polyunsaturated fatty acids were abundant,with series n-3 as the predominant component.Seasonal variations in the 20:5n-3 and 22:6n-3 levels and the principal n-3 fatty acids were clearly related to the reproductive cycle.The ∑(n-3) and ∑(n-6) values were relatively high during January-May,and the associated unsaturation index was significantly higher than that in other months.The results suggest that fatty acids play an important role in the gametogenesis of F.mutica.展开更多
The seasonal cycle of atmospheric CO2 at surface observation stations in the northern hemisphere is driven primarily by net ecosystem production (NEP) fluxes from terrestrial ecosystems. In addition to NEP from terres...The seasonal cycle of atmospheric CO2 at surface observation stations in the northern hemisphere is driven primarily by net ecosystem production (NEP) fluxes from terrestrial ecosystems. In addition to NEP from terrestrial ecosystems, surface fluxes from fossil fuel combustion and ocean exchange also contribute to the seasonal cycle of atmospheric CO2. Here the authors use the Goddard Earth Observing System-Chemistry (GEOS-Chem) model (version 8-02-01), with modifications, to assess the impact of these fluxes on the seasonal cycle of atmospheric CO2 in 2005. Modifications include monthly fossil and ocean emission inventories. CO2 simulations with monthly varying and annual emission inventories were carried out separately. The sources and sinks of monthly averaged net surface flux are different from those of annual emission inventories for every month. Results indicate that changes in monthly averaged net surface flux have a greater impact on the average concentration of atmospheric CO2 in the northern hemisphere than on the average concentration for latitudes 30-90°S in July. The concentration values differ little between both emission inventories over the latitudinal range from the equator to 30°S in January and July. The accumulated impacts of the monthly averaged fossil and ocean emissions contribute to an increase of the total global monthly average of CO2 from May to December.An apparent discrepancy for global average CO2 concentration between model results and observation was because the observation stations were not sufficiently representative. More accurate values for monthly varying net surface flux will be necessary in future to run the CO2 simulation.展开更多
The male gametogenic cycle, spawning season, first sexual maturity, and the biological minimum size in male Ruditapes philippinarum were investigated by qualitative and quantitative reproductive analyses. In the study...The male gametogenic cycle, spawning season, first sexual maturity, and the biological minimum size in male Ruditapes philippinarum were investigated by qualitative and quantitative reproductive analyses. In the study of the male gametogenic cycle by qualitative histological analysis, the gametogenic cycle in male individuals can be classified into five successive stages: (1) early active stage, (2) late active stage, (3) ripe stage, (4) partially spawned stage, and (5) spent and inactive stage. Monthly changes in the gonad index in males measured by qualitative analysis showed a similar pattern to the male gametogenic cycle. In the study of the male gametogenic cycle by quantitative statistical analysis, monthly changes in the portions (%) of areas occupied by the testis areas to total tissue areas showed a rapid increase in March, and reached the maximum in May-June. And also monthly changes in the portions (%) of areas occupied by the spermatogenic stages to the testis area showed a maximum in May and gradually decreased from June to October. Therefore, this species showed a unimodal gametogenic cycle during the year, and the number of spawning seasons occurred once per year, from June to October, with a peak spawning between July and August. The percentage at the first sexual maturity of male clams ranging from 15.1-20.0 mm in shell length was 64.7%, and that of all individuals ranging from over 25.1 mm in shell length was 100%. The biological minimum size (shell lengths at 50% of sexual maturity (RMs0)) of male mature clams that was fitted to an exponential equation was 17.16 mm (considered to be 1 year old). Because harvesting clams less than 17.16 mm in shell length could potentially cause a drastic reduction in recruitment, a measure indicating a prohibitory fishing size should be enacted for adequate fisheries management.展开更多
Using NCEP/NCAR and ERA-40 reanalyses,we studied the seasonal cycle of redistribution of air mass between continents and oceans over the Northern Hemisphere.Our results demonstrate that air mass in the Northern Hemisp...Using NCEP/NCAR and ERA-40 reanalyses,we studied the seasonal cycle of redistribution of air mass between continents and oceans over the Northern Hemisphere.Our results demonstrate that air mass in the Northern Hemisphere shifts clearly between continents and oceans when the season cycles.In July,the air mass reaches its lowest over Eurasia and its highest over the Pacific,and the opposite occurs in January.However,a different scenario is observed over the north Atlantic;the accumulated air mass reaches its maximum there in May.The maintenance of the accumulation or loss of air mass in a region is found to be related to the areal mean air mass flux divergence and the difference between precipitation and evaporation in an air column.The zonal-vertical circulations change with season,with the air ascent and decent reversed between land and sea.Besides,there also exists a noticeable difference of water vapor content of the air between continents and oceans,and this difference is season-dependent.Physically,the vapor content is able to significantly affect the atmosphere in absorbing solar short-and earth’s long-wave radiations,hence influencing atmospheric thermal conditions.The land-sea thermal contrasts inclusive of the diabatic heating rate changes their signs with season going on,resulting in the reversal of orientations of the temperature gradient.These thermal forcings not only facilitate the formation of the monsoons but also indirectly induce the seasonal cycle of the air mass exchanging over regions between continents and oceans.展开更多
In this paper, we focus on ionospheric absorption in the East Asia sector, and look for manifestations of atmospheric influences in this area. First, a 4-year historical record of absorption measurement at Beijing is ...In this paper, we focus on ionospheric absorption in the East Asia sector, and look for manifestations of atmospheric influences in this area. First, a 4-year historical record of absorption measurement at Beijing is presented. This record was obtained by a sweep frequency technique, in which 27-days periodic variation of the absorption level was found to be dominant, appearing in most seasons except winters. Instead, unusual enhancements of the absorption level appeared in winters (winter anomaly), at the meantime the level varied with periods mainly in the range of 8-12 days. Comparing to 27-days period from the Sun, the shorter period oscillations should be related to planetary wave activities in lower atmosphere. Second, fmin data from 5 mid-latitude ionosondes in Japan were used as an indirect but long-term measurement. With the fmin data covering two solar cycles, disturbances with various periods were found to be active around solar maximum years, but the 8-12 days oscillations always existed in winter, showing seasonal dependence instead of connection to solar activity. These results given in this paper demonstrate seasonal and solar cycle-dependent features of the ionospheric absorption in East Asia sector, and confirm the existence of influence from atmosphere-ionosphere coupling in this area, as well as the relationship between ionospheric winter anomaly and planetary wave activity.展开更多
基金the National Marine Public Welfare Research Program(201205023)the Scientific and Technical Supporting Program(2011BAD13B03)
文摘From March 2004 to February 2005,seasonal variations in lipid content and fatty acid composition of gonad of the cockle Fulvia mutica(Reeve) were studied on the eastern coast of China in relation to the reproductive cycle and environment conditions(e.g.,temperature and food availability).Histological analysis as well as lipid and fatty acid analyses were performed on neutral and polar lipids of the gonad.Results showed that gametogenesis occurred in winter and spring at the expense of lipids previously accumulated in summer and autumn,whereas spawning occurred in summer(20.4-24.6℃).The seasonal variation in lipid content was similar to that of the mean oocyte diameter.In both neutral and polar lipids,the 20:5n-3 and 22:6n-3 levels were relatively higher than saturated fatty acids,and polyunsaturated fatty acids were abundant,with series n-3 as the predominant component.Seasonal variations in the 20:5n-3 and 22:6n-3 levels and the principal n-3 fatty acids were clearly related to the reproductive cycle.The ∑(n-3) and ∑(n-6) values were relatively high during January-May,and the associated unsaturation index was significantly higher than that in other months.The results suggest that fatty acids play an important role in the gametogenesis of F.mutica.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2006CB403606)the Chinese Academy of Sciences(Grant Nos.KZCX2-YW-143 and KZCX2-YW-202)+1 种基金the National High Technology Research and Development Program of China(863 Program)(Grant No.2009AA12Z138)the National Natural Science Foundation of China(Grant Nos.40606008,40437017,and 40221503)
文摘The seasonal cycle of atmospheric CO2 at surface observation stations in the northern hemisphere is driven primarily by net ecosystem production (NEP) fluxes from terrestrial ecosystems. In addition to NEP from terrestrial ecosystems, surface fluxes from fossil fuel combustion and ocean exchange also contribute to the seasonal cycle of atmospheric CO2. Here the authors use the Goddard Earth Observing System-Chemistry (GEOS-Chem) model (version 8-02-01), with modifications, to assess the impact of these fluxes on the seasonal cycle of atmospheric CO2 in 2005. Modifications include monthly fossil and ocean emission inventories. CO2 simulations with monthly varying and annual emission inventories were carried out separately. The sources and sinks of monthly averaged net surface flux are different from those of annual emission inventories for every month. Results indicate that changes in monthly averaged net surface flux have a greater impact on the average concentration of atmospheric CO2 in the northern hemisphere than on the average concentration for latitudes 30-90°S in July. The concentration values differ little between both emission inventories over the latitudinal range from the equator to 30°S in January and July. The accumulated impacts of the monthly averaged fossil and ocean emissions contribute to an increase of the total global monthly average of CO2 from May to December.An apparent discrepancy for global average CO2 concentration between model results and observation was because the observation stations were not sufficiently representative. More accurate values for monthly varying net surface flux will be necessary in future to run the CO2 simulation.
文摘The male gametogenic cycle, spawning season, first sexual maturity, and the biological minimum size in male Ruditapes philippinarum were investigated by qualitative and quantitative reproductive analyses. In the study of the male gametogenic cycle by qualitative histological analysis, the gametogenic cycle in male individuals can be classified into five successive stages: (1) early active stage, (2) late active stage, (3) ripe stage, (4) partially spawned stage, and (5) spent and inactive stage. Monthly changes in the gonad index in males measured by qualitative analysis showed a similar pattern to the male gametogenic cycle. In the study of the male gametogenic cycle by quantitative statistical analysis, monthly changes in the portions (%) of areas occupied by the testis areas to total tissue areas showed a rapid increase in March, and reached the maximum in May-June. And also monthly changes in the portions (%) of areas occupied by the spermatogenic stages to the testis area showed a maximum in May and gradually decreased from June to October. Therefore, this species showed a unimodal gametogenic cycle during the year, and the number of spawning seasons occurred once per year, from June to October, with a peak spawning between July and August. The percentage at the first sexual maturity of male clams ranging from 15.1-20.0 mm in shell length was 64.7%, and that of all individuals ranging from over 25.1 mm in shell length was 100%. The biological minimum size (shell lengths at 50% of sexual maturity (RMs0)) of male mature clams that was fitted to an exponential equation was 17.16 mm (considered to be 1 year old). Because harvesting clams less than 17.16 mm in shell length could potentially cause a drastic reduction in recruitment, a measure indicating a prohibitory fishing size should be enacted for adequate fisheries management.
基金supported by the National Natural Science Foundation of China (Grant No. 41175062)the Project of Scientific Creation of Post-Graduates of Jiangsu (Grant No. CXZZ12_0485)the Creative Teams of Jiangsu Qinglan Project
文摘Using NCEP/NCAR and ERA-40 reanalyses,we studied the seasonal cycle of redistribution of air mass between continents and oceans over the Northern Hemisphere.Our results demonstrate that air mass in the Northern Hemisphere shifts clearly between continents and oceans when the season cycles.In July,the air mass reaches its lowest over Eurasia and its highest over the Pacific,and the opposite occurs in January.However,a different scenario is observed over the north Atlantic;the accumulated air mass reaches its maximum there in May.The maintenance of the accumulation or loss of air mass in a region is found to be related to the areal mean air mass flux divergence and the difference between precipitation and evaporation in an air column.The zonal-vertical circulations change with season,with the air ascent and decent reversed between land and sea.Besides,there also exists a noticeable difference of water vapor content of the air between continents and oceans,and this difference is season-dependent.Physically,the vapor content is able to significantly affect the atmosphere in absorbing solar short-and earth’s long-wave radiations,hence influencing atmospheric thermal conditions.The land-sea thermal contrasts inclusive of the diabatic heating rate changes their signs with season going on,resulting in the reversal of orientations of the temperature gradient.These thermal forcings not only facilitate the formation of the monsoons but also indirectly induce the seasonal cycle of the air mass exchanging over regions between continents and oceans.
基金supported by the National Natural Science Foundation of China (Grant No. 40904036)the Public Science and Technology Research Funds Projects of Ocean, State Oceanic Administration of China (Grant No. 201005017)+1 种基金the National Basic Research Program of China ("973" Project) (Grant No. 2011CB811405)the Specialized Research Fund for State Key Laboratories
文摘In this paper, we focus on ionospheric absorption in the East Asia sector, and look for manifestations of atmospheric influences in this area. First, a 4-year historical record of absorption measurement at Beijing is presented. This record was obtained by a sweep frequency technique, in which 27-days periodic variation of the absorption level was found to be dominant, appearing in most seasons except winters. Instead, unusual enhancements of the absorption level appeared in winters (winter anomaly), at the meantime the level varied with periods mainly in the range of 8-12 days. Comparing to 27-days period from the Sun, the shorter period oscillations should be related to planetary wave activities in lower atmosphere. Second, fmin data from 5 mid-latitude ionosondes in Japan were used as an indirect but long-term measurement. With the fmin data covering two solar cycles, disturbances with various periods were found to be active around solar maximum years, but the 8-12 days oscillations always existed in winter, showing seasonal dependence instead of connection to solar activity. These results given in this paper demonstrate seasonal and solar cycle-dependent features of the ionospheric absorption in East Asia sector, and confirm the existence of influence from atmosphere-ionosphere coupling in this area, as well as the relationship between ionospheric winter anomaly and planetary wave activity.