期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
GM(1,1)残差修正的季节性神经网络预测模型及其应用 被引量:5
1
作者 叶明全 胡学钢 《计算机工程与应用》 CSCD 北大核心 2005年第1期194-196,共3页
季节性时间序列具有增长性和波动性的二重趋势。灰色模型GM(1,1)能反映时间序列的总体变化趋势,但不能很好反映其季节性波动变化的具体特征,在模拟与预测季节性时间序列中有明显的局限性。文中介绍了季节性神经网络建立的残差修正模型... 季节性时间序列具有增长性和波动性的二重趋势。灰色模型GM(1,1)能反映时间序列的总体变化趋势,但不能很好反映其季节性波动变化的具体特征,在模拟与预测季节性时间序列中有明显的局限性。文中介绍了季节性神经网络建立的残差修正模型。通过季节性神经网络模型对GM(1,1)的残差序列进行分析,提取其中的非线性成分作为预测时的补偿项,以进行残差修正,从而形成GMSANN叠合预测模型。实例表明,所建模型具有较好的适应性和预测精度。 展开更多
关键词 季节性时间序列 GM(1 1)模型 残差修正 季节性神经网络
下载PDF
季节性组合预测模型在医院门诊量中的应用研究 被引量:7
2
作者 叶明全 胡学钢 《计算机工程与设计》 CSCD 北大核心 2005年第7期1965-1967,1970,共4页
医院门诊量是一个具有复杂的非线性组合特征的季节性时间序列。为解决传统时间序列预测大多数都是使用单一模型,以致影响预测精度等问题,采用了最优加权组合预测方法将季节性ARIMA乘积模型和季节性神经网络模型进行组合优化。结果表示,... 医院门诊量是一个具有复杂的非线性组合特征的季节性时间序列。为解决传统时间序列预测大多数都是使用单一模型,以致影响预测精度等问题,采用了最优加权组合预测方法将季节性ARIMA乘积模型和季节性神经网络模型进行组合优化。结果表示,季节性组合预测模型在拟合精度和预测准确性方面优于任何单一预测方法,为季节性时间序列预测提供了一种新的实用方法。 展开更多
关键词 季节性时间序列 季节性ARIMA乘积模型 季节性神经网络 组合预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部