Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variati...Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.展开更多
The irrigated areas in the northern region of China are important food production areas. Therefore, studies on the variability of the carbon balance in these agro-ecosystems are fundamental for the management of carbo...The irrigated areas in the northern region of China are important food production areas. Therefore, studies on the variability of the carbon balance in these agro-ecosystems are fundamental for the management of carbon sequestration. This paper simulated the long-term variability of the carbon balance in a typical irrigated area along the lower Yellow River from 1984 to 2006, using a process-based ecosystem model called the Simple Biosphere Model, version 2. The mean annual gross primary production (GPP), mean annual net assimilation rate (NAR), mean annual soil respiration (Rs ), and mean annual net ecosystem exchange (NEE) were 1733, 1642, 1304, and 338g C m-2 a-1 , respectively. A significant increasing trend in the seasonal total NAR during the wheat growing season, and a significant decreasing trend in the seasonal total NAR during the maize growing season were detected. However, no significant trend was found in the annual NAR, R s , and NEE. The average carbon sequestration was 1.93 Tg C a-1 when the grain harvest was not taken into account, and the carbon sequestration amount during the maize season was higher than that during the wheat season. However, the agro-ecosystem was a weak carbon source with a value of 0.23 Tg C a-1 , when the carbon in the grain was assumed emitted into the atmosphere.展开更多
基金supported by the National Natural Science Foundation of China(Nos.G49790010 and 40476045).
文摘Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.
基金supported by National Natural Science Funds for Distinguished Young Scholar (Grant No.51025931)National Natural Science Foundation of China (Grant Nos.50939004 and 50909051)China Postdoctoral Science Foundation(Grant No. 2011M500021)
文摘The irrigated areas in the northern region of China are important food production areas. Therefore, studies on the variability of the carbon balance in these agro-ecosystems are fundamental for the management of carbon sequestration. This paper simulated the long-term variability of the carbon balance in a typical irrigated area along the lower Yellow River from 1984 to 2006, using a process-based ecosystem model called the Simple Biosphere Model, version 2. The mean annual gross primary production (GPP), mean annual net assimilation rate (NAR), mean annual soil respiration (Rs ), and mean annual net ecosystem exchange (NEE) were 1733, 1642, 1304, and 338g C m-2 a-1 , respectively. A significant increasing trend in the seasonal total NAR during the wheat growing season, and a significant decreasing trend in the seasonal total NAR during the maize growing season were detected. However, no significant trend was found in the annual NAR, R s , and NEE. The average carbon sequestration was 1.93 Tg C a-1 when the grain harvest was not taken into account, and the carbon sequestration amount during the maize season was higher than that during the wheat season. However, the agro-ecosystem was a weak carbon source with a value of 0.23 Tg C a-1 , when the carbon in the grain was assumed emitted into the atmosphere.