Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variati...Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.展开更多
Using the monthly mean reanalysis data of height, wind and vertical velocity of NCEP/NCAR from 1958 to 2003, the characteristics of 500hPa height anomalies in the Northern Hemisphere, convergence and divergence on the...Using the monthly mean reanalysis data of height, wind and vertical velocity of NCEP/NCAR from 1958 to 2003, the characteristics of 500hPa height anomalies in the Northern Hemisphere, convergence and divergence on the levels of 200hPa and 925hPa and vertical stream over the Shandong province were studied and compared with that over North China. The study shows that the teleconnection pattern called East Asia-Pacific pattern (EAP) plays important roles in the summer rainfall of Shandong. Weaker Okhotsk sea high, stronger upward stream over tropical areas and Shandong and northward location of subtropical high and stronger Indian low, are likely to lead to more rain in Shandong province in summer, but there are some flood (drought) years in which these characteristics such as the location and intensity of subtropical high change with the least extent. The difference between Shandong and North China in 500hPa height is that there is a teleconnection pattern called Europe / Asia pattern in North China, while there is a negative East Asia Pattern in Shandong during drought years. There is a teleconnection relation between Shandong summer rainfall and convective activities happening in tropical areas in spring and summer accomplished by the Rossby waves. During the flood years in Shandong, the convective activities happening in tropical India Ocean and tropical west Pacific and Walker circulation are much stronger than that during the drought years, but the convective activities happening in tropical east Pacific are weaker than those during the drought years.展开更多
Atmospheric deposition, a major pathway of metals entering into soils, plays an important role in soil environment, especially in urban regions where a large amount of pollutants are emitted into atmosphere through va...Atmospheric deposition, a major pathway of metals entering into soils, plays an important role in soil environment, especially in urban regions where a large amount of pollutants are emitted into atmosphere through various sources. In order to understand the characteristics of atmospheric deposition in urban area and its relation with natural and anthropogenic sources, a three-year study of atmospheric deposition at three typical sites, industrial zone(IN), urban residential area(RZ) and suburban forested scenic area(FA),was carried out in Nanjing, a metropolitan city in eastern China from 2005 to 2007. The bulk deposition rate and element composition of atmospheric deposition varied spatio-temporally in the urban zones of Nanjing. The concentrations of Cu, Zn, Pb and Ca in the atmospheric deposits were strongly enriched in the whole Nanjing region; however, anthropogenic pollutants in atmospheric deposits were diluted by the input of external mineral dust transported from northwestern China. Source apportionment through principal component analysis(PCA) showed that the background atmospheric deposition at the FA site was the combination of external aerosol and local emission sources. The input of long-range transported Asian dust had an important influence on the urban background deposition, especially in spring when the continental dust from the northwestern China prevailed. Marine aerosol source was observed in summer and autumn, the seasons dominated by summer monsoon in Nanjing. In contrast, the contribution of local anthropogenic emission source was constant regardless of seasons. At the RZ and IN sites, the atmospheric deposition was more significantly affected by the nearby human activities than at the FA site. In addition, different urban activities and both the winter and summer Asian monsoons had substantial impacts on the characteristics of dust deposition in urban Nanjing.展开更多
基金supported by the National Natural Science Foundation of China(Nos.G49790010 and 40476045).
文摘Based on experiment data of the Sino-German comprehensive investigations in the Bohai Sea in 1998 and 1999, a simple coupled pelagic-benthic ecosystem multi-box model is used to simulate the ecosystem seasonal variation. The pelagic sub-model consists of seven state variables: phytoplankton, zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic sub-model includes macro-benthos, meiobenthos, bacteria, detritus, TIN and TIP in the sediment. Besides the effects of solar radiation, water temperature and the nutrient from sea bottom exudation, land-based inputs are considered. The impact of the advection terms between the boxes is also considered. Meanwhile, the effects of the micro- bial-loop are introduced with a simple parameterization. The seasonal variations and the horizontal distributions of the ecosystem state variables of the Bohai Sea are simulated. Compared with the observations, the results of the multi-box model are reasonable. The modeled results show that about 13% of the photosynthesis primary production goes to the main food loop, 20% transfers to the benthic domain, 44% is consumed by the respiration of phytoplankton, and the rest goes to DOC. Model results also show the importance of the microbial food loop in the ecosystem of the Bohai Sea, and its contribution to the annual zooplankton production can be 60%-64%.
基金Dedicated Research Fund for Public Interest from the Ministry of Science and Technology (2001DIB20104) "Relationship Between Subtropical Monsoon Circulation and Summer Precipitation in Shandong", a key science project for 2002 in the Shandong province.
文摘Using the monthly mean reanalysis data of height, wind and vertical velocity of NCEP/NCAR from 1958 to 2003, the characteristics of 500hPa height anomalies in the Northern Hemisphere, convergence and divergence on the levels of 200hPa and 925hPa and vertical stream over the Shandong province were studied and compared with that over North China. The study shows that the teleconnection pattern called East Asia-Pacific pattern (EAP) plays important roles in the summer rainfall of Shandong. Weaker Okhotsk sea high, stronger upward stream over tropical areas and Shandong and northward location of subtropical high and stronger Indian low, are likely to lead to more rain in Shandong province in summer, but there are some flood (drought) years in which these characteristics such as the location and intensity of subtropical high change with the least extent. The difference between Shandong and North China in 500hPa height is that there is a teleconnection pattern called Europe / Asia pattern in North China, while there is a negative East Asia Pattern in Shandong during drought years. There is a teleconnection relation between Shandong summer rainfall and convective activities happening in tropical areas in spring and summer accomplished by the Rossby waves. During the flood years in Shandong, the convective activities happening in tropical India Ocean and tropical west Pacific and Walker circulation are much stronger than that during the drought years, but the convective activities happening in tropical east Pacific are weaker than those during the drought years.
基金supported by the National Natural Science Foundation of China(Nos.41130530 and 40625001)
文摘Atmospheric deposition, a major pathway of metals entering into soils, plays an important role in soil environment, especially in urban regions where a large amount of pollutants are emitted into atmosphere through various sources. In order to understand the characteristics of atmospheric deposition in urban area and its relation with natural and anthropogenic sources, a three-year study of atmospheric deposition at three typical sites, industrial zone(IN), urban residential area(RZ) and suburban forested scenic area(FA),was carried out in Nanjing, a metropolitan city in eastern China from 2005 to 2007. The bulk deposition rate and element composition of atmospheric deposition varied spatio-temporally in the urban zones of Nanjing. The concentrations of Cu, Zn, Pb and Ca in the atmospheric deposits were strongly enriched in the whole Nanjing region; however, anthropogenic pollutants in atmospheric deposits were diluted by the input of external mineral dust transported from northwestern China. Source apportionment through principal component analysis(PCA) showed that the background atmospheric deposition at the FA site was the combination of external aerosol and local emission sources. The input of long-range transported Asian dust had an important influence on the urban background deposition, especially in spring when the continental dust from the northwestern China prevailed. Marine aerosol source was observed in summer and autumn, the seasons dominated by summer monsoon in Nanjing. In contrast, the contribution of local anthropogenic emission source was constant regardless of seasons. At the RZ and IN sites, the atmospheric deposition was more significantly affected by the nearby human activities than at the FA site. In addition, different urban activities and both the winter and summer Asian monsoons had substantial impacts on the characteristics of dust deposition in urban Nanjing.