Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tengger Desert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic su...Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tengger Desert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic susceptibility and grain size, we inferred that the northwestern margin of East Asian monsoon region experienced abrupt climatic changes during the last deglaciation. Six oscillation events were identified: Oldest Dryas, Bolling, Older Dryas, Allerod, Intra-Allerod Cold Period (IACP) and Younger Dryas (YD). The summer monsoon was weaker during Oldest Dryas and Younger Dryas when the winter monsoon was stronger. However, during the B/A (Bolling/Allerod) period, the summer monsoon strengthened, reflected by magnetic susceptibility, when the winter monsoon also became strong, which is different from the paleoclimatic pattern established in the East Asian monsoon region. Furthermore, the summer monsoon was nearly in phase with the climate changes inferred from the oxygen isotopic records of Greenland ice cores. It could be speculated that the variations of the sea ice cover in the high latitudes of the North Hemisphere affected the high pressure of Asian continent and the changes of the winter monsoon inland. On the other hand, the sea ice cover variations might have indirectly caused the occurrence of ENSO events that has tightly been related to the summer monsoon in northwest margin of East Asian monsoon region.展开更多
By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followe...By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, seq should be greater than 335K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105E ~ 120E,5N ~ 20N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.展开更多
The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal...The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.展开更多
This study examined the rainfall around the middle and lower reaches of the Yangtze River and related atmospheric circulation by using NCEP reanalysis data. The purpose of this study is to analyze their decadal variat...This study examined the rainfall around the middle and lower reaches of the Yangtze River and related atmospheric circulation by using NCEP reanalysis data. The purpose of this study is to analyze their decadal variation and the relationship among rainfall, atmospheric circulation around East Asia and the ENSO episodes. Current results are presented as follows: (1) Very clear increasing trend of the rainfall around the middle and low reaches of the Yangtze River during the Meiyu period and June to July is found in the recent 15 years. Meanwhile, the geopotential height at 500 hPa around the Okhotsk Sea also holds similar increasing trend. It is noticeable that ENSO episodes tend to occur more frequently in the recent 15 years. (2) An index describing East Asian summer monsoon is well correlated with the SST in the Nino-3 region in preceding autumn in the recent 20 years but is not prior to the period. This means that the El Nino phenomenon exerts more impacts on East Asian summer monsoon recently. (3) The warm phase of PDO in the recent 20 years basically coincides with the increasing trend of the atmospheric circulation in East Asia.展开更多
The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els fai...The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els failed to reproduce rainfall associated with the East Asian summer monsoon (EASM),and hence the seasonal cycle in eastern China,but provided reasonable results in Southwest (SW) and Northeast China (NE).The simula-tions produced reasonable results for the Yangtze-Huai (YH) Basin area,although the Meiyu phenomenon was underestimated in general.One typical regional phe-nomenon,a seasonal northward shift in the rain belt from early to late summer,was completely missed by most models.The long-term climate trends in rainfall over eastern China were largely underestimated,and the ob-served geographical pattern of rainfall changes was not reproduced by most models.Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex-treme Values) distributions.The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions,but reasonable values were calculated for the North China (NC) and NE regions.These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models.Nonetheless,models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.展开更多
Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene dro...Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.展开更多
In this study, the authors simulate the East Asian climate changes in the mid-Pliocene (~3.3 to 3.0 Ma BP) with the Community Atmosphere Model version 3.1 (CAM3.1) and compare the simulated East Asian monsoon with pa...In this study, the authors simulate the East Asian climate changes in the mid-Pliocene (~3.3 to 3.0 Ma BP) with the Community Atmosphere Model version 3.1 (CAM3.1) and compare the simulated East Asian monsoon with paleoclimate data. The simulations show an obvious warming pattern in East Asia in the mid-Pliocene compared with the pre-industrial climate, with surface air temperature increasing by 0.5 4.0°C. In the warm mid-Pliocene simulation, the East Asian Summer Monsoon (EASM) becomes stronger, while the East Asian Winter Monsoon (EAWM) is similar relative to the pre-industrial climate. Compared with the paleoclimate data, our simulations depict the intensified EASM well but cannot reproduce the weakened EAWM. This model-data discrepancy may be attributed to the uncertainty in the reconstructed mid-Pliocene sea surface temperature.展开更多
This paper investigates the influence of Indian Ocean Dipole (IOD) on climatic variations over East Asian monsoon region, based on CAS IAP AGCM-Ⅱduring Equatorial East Pacific Ocean SSTA or not. The results show that...This paper investigates the influence of Indian Ocean Dipole (IOD) on climatic variations over East Asian monsoon region, based on CAS IAP AGCM-Ⅱduring Equatorial East Pacific Ocean SSTA or not. The results show that the southwest monsoon over East Asian will break out later than normal, the intensity of the summer monsoon over the South China Sea (SCS) is stronger than normal, and more rainfall on Chinese main land is simulated when only IOD forcing exists. With both IOD and Equatorial East Pacific Ocean SSTA forcing, the southwest monsoon will break out much later than normal, the intensity of the SCS summer monsoon also is weaker than normal, and less rainfall in North China is simulated. Therefore, Equatorial East Pacific Ocean SSTA and IOD have a synergic effect.展开更多
In China's Mainland, the summer monsoon rainy band is referred to as the mei-yu precipitation front, which extends northward from South China to the Yangtze River, Huaihe River, and Yellow River, depending on the ...In China's Mainland, the summer monsoon rainy band is referred to as the mei-yu precipitation front, which extends northward from South China to the Yangtze River, Huaihe River, and Yellow River, depending on the season. This paper describes the structure of the mei-yu front associated with a persistent heavy rainfall event that occurred in the summer of 2007. The mei-yu front occurs when the subtropical oceanic warm, moist air mass and the extra tropical continental dry, cold air mass converge on the lee side of the Tibetan Plateau. The authors defined the equivalent temperature using two terms of dry-air temperature and the specific humidity and calculated its horizontal gradient to indicate the mei-yu front. The vertical structure of the mei-yu front and the moist thermal winds surrounding it were examined based on the equivalent temperature.展开更多
This paper revealed the climatic change characteristics of fog and haze of different levels over North China and Huang-Huai area(NCHH).It was found that the haze-prone period has changed from winter into a whole year,...This paper revealed the climatic change characteristics of fog and haze of different levels over North China and Huang-Huai area(NCHH).It was found that the haze-prone period has changed from winter into a whole year,and the haze days(HD)in winter have increased significantly.The foggy days(FD)are half of HD.There are little difference on the number of days and trends of fog at various levels.The HD and FD show no obvious positive correlation until the 1980s.Fog has larger spatial scale,showing more in the south than in the north.Haze occurs mainly around large cities with a discrete distribution.In the background of weakened East Asian Winter Monsoon(EAWM)and sufficient particulate matter,the negative correlation between haze and wind speed is weakened,but the positive correlation between haze and moisture conditions(precipitation and humidity)is significantly strengthened.In recent years,small wind and variability appear frequently.Meanwhile,as the stable source and strong moisture absorption of the aerosol particles,the moisture condition becomes one key control factor in the haze,especially wet haze with less visibility.In contrast,the FD presents a stable positive correlation with precipitation and relative humidity,but has no obvious negative correlation with wind speed.展开更多
Pollen grains deposited in marine sediments are transported from land to sea by wind or surface water flows.We analyzed pollen collected from the air and seawater from the coast of the Yellow Sea near China and into t...Pollen grains deposited in marine sediments are transported from land to sea by wind or surface water flows.We analyzed pollen collected from the air and seawater from the coast of the Yellow Sea near China and into the western Pacific Ocean between December 2008 and January 2009 during the cruise "KX08-973".Results showed that abundant pollen grains of Artemisia and Chenopodiaceae were probably transported to the continental shelf of the East China Sea,the East Philippine Sea and the equatorial regions of the Pacific Ocean by the winter monsoon.Some pollen may have even traveled over 2000 km from the East Asia continent to the tropical Pacific Ocean.However,a gradual decline of temperate components and an increase in tropical components was observed towards the tropical regions.Fern spores were rare in the air samples,but much more abundant in seawater samples,even though they were collected in nearly the same areas,which indicates that most fern spores were carried to the ocean by flowing water.These results suggest that the winter monsoon may be the major pollen carrier and transporter in the study area during winter.展开更多
基金Under the auspices of the National Natural Science Foundation of China (No. 40271114, 40301051)
文摘Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tengger Desert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic susceptibility and grain size, we inferred that the northwestern margin of East Asian monsoon region experienced abrupt climatic changes during the last deglaciation. Six oscillation events were identified: Oldest Dryas, Bolling, Older Dryas, Allerod, Intra-Allerod Cold Period (IACP) and Younger Dryas (YD). The summer monsoon was weaker during Oldest Dryas and Younger Dryas when the winter monsoon was stronger. However, during the B/A (Bolling/Allerod) period, the summer monsoon strengthened, reflected by magnetic susceptibility, when the winter monsoon also became strong, which is different from the paleoclimatic pattern established in the East Asian monsoon region. Furthermore, the summer monsoon was nearly in phase with the climate changes inferred from the oxygen isotopic records of Greenland ice cores. It could be speculated that the variations of the sea ice cover in the high latitudes of the North Hemisphere affected the high pressure of Asian continent and the changes of the winter monsoon inland. On the other hand, the sea ice cover variations might have indirectly caused the occurrence of ENSO events that has tightly been related to the summer monsoon in northwest margin of East Asian monsoon region.
基金National Scaling Project A The Scientific Experiment on South China Sea Monsoon
文摘By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, seq should be greater than 335K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105E ~ 120E,5N ~ 20N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.
基金supported by the National Basic Research Program of China(2012CB955401 and 2009CB421406)the National Natural Science Foundation of China(41175072)
文摘The authors investigate monsoon change in East Asia in the 21st century under the Special Report on Emissions Scenarios (SRES) A1B scenario using the results of a regional climate model, RegCM3, with a high horizontal resolution. First, the authors evaluate the model's performance compared with NCEP-NCAR reanalysis data, showing that the model can reliably reproduce the basic climatology of both winter and summer monsoons over East Asia. Next, it is found that the winter monsoon in East Asia would slightly weaken in the 21st century with spatial differences. Over northern East China, anomalous southerly winds would dominate in the mid-and late-21st century because the zonal land-sea thermal contrast is expected to become smaller, due to a stronger warming trend over land than over ocean. However, the intensity of the summer monsoon in East Asia shows a statistically significant upward trend over this century because the zonal land-sea thermal contrast between East Asia and the western North Pacific would become larger, which, in turn, would lead to larger sea level pressure gradients throughout East Asia and extending to the adjacent ocean.
基金Research Fund for Tropical Oceans Project 973 of the Ministry of Science and Technology(2004CB418300) No. 2002DIB20067 from the Ministry of Science and Technology.
文摘This study examined the rainfall around the middle and lower reaches of the Yangtze River and related atmospheric circulation by using NCEP reanalysis data. The purpose of this study is to analyze their decadal variation and the relationship among rainfall, atmospheric circulation around East Asia and the ENSO episodes. Current results are presented as follows: (1) Very clear increasing trend of the rainfall around the middle and low reaches of the Yangtze River during the Meiyu period and June to July is found in the recent 15 years. Meanwhile, the geopotential height at 500 hPa around the Okhotsk Sea also holds similar increasing trend. It is noticeable that ENSO episodes tend to occur more frequently in the recent 15 years. (2) An index describing East Asian summer monsoon is well correlated with the SST in the Nino-3 region in preceding autumn in the recent 20 years but is not prior to the period. This means that the El Nino phenomenon exerts more impacts on East Asian summer monsoon recently. (3) The warm phase of PDO in the recent 20 years basically coincides with the increasing trend of the atmospheric circulation in East Asia.
基金supported by the National Basic Research Program of China 2009CB421401/2006CB400503the Chinese Meteorological Administration ProgramGYHY200706001
文摘The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated,with a focus on summer precipitation in eastern China for the last 40 years of the 20th century.Most mod-els failed to reproduce rainfall associated with the East Asian summer monsoon (EASM),and hence the seasonal cycle in eastern China,but provided reasonable results in Southwest (SW) and Northeast China (NE).The simula-tions produced reasonable results for the Yangtze-Huai (YH) Basin area,although the Meiyu phenomenon was underestimated in general.One typical regional phe-nomenon,a seasonal northward shift in the rain belt from early to late summer,was completely missed by most models.The long-term climate trends in rainfall over eastern China were largely underestimated,and the ob-served geographical pattern of rainfall changes was not reproduced by most models.Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex-treme Values) distributions.The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions,but reasonable values were calculated for the North China (NC) and NE regions.These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models.Nonetheless,models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.
基金Under the auspices of National Natural Science Foundation of China (No. 40603007)
文摘Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.
基金supported by the National Basic Research Program of China(2009CB421406)the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-Q1-02)the National Natural Science Foundation of China(4090205 and 40975050)
文摘In this study, the authors simulate the East Asian climate changes in the mid-Pliocene (~3.3 to 3.0 Ma BP) with the Community Atmosphere Model version 3.1 (CAM3.1) and compare the simulated East Asian monsoon with paleoclimate data. The simulations show an obvious warming pattern in East Asia in the mid-Pliocene compared with the pre-industrial climate, with surface air temperature increasing by 0.5 4.0°C. In the warm mid-Pliocene simulation, the East Asian Summer Monsoon (EASM) becomes stronger, while the East Asian Winter Monsoon (EAWM) is similar relative to the pre-industrial climate. Compared with the paleoclimate data, our simulations depict the intensified EASM well but cannot reproduce the weakened EAWM. This model-data discrepancy may be attributed to the uncertainty in the reconstructed mid-Pliocene sea surface temperature.
基金National key fundamental research development program "Research of formation mechanism and forecast theory about fatal climatic calamity of China" (G1998040900).
文摘This paper investigates the influence of Indian Ocean Dipole (IOD) on climatic variations over East Asian monsoon region, based on CAS IAP AGCM-Ⅱduring Equatorial East Pacific Ocean SSTA or not. The results show that the southwest monsoon over East Asian will break out later than normal, the intensity of the summer monsoon over the South China Sea (SCS) is stronger than normal, and more rainfall on Chinese main land is simulated when only IOD forcing exists. With both IOD and Equatorial East Pacific Ocean SSTA forcing, the southwest monsoon will break out much later than normal, the intensity of the SCS summer monsoon also is weaker than normal, and less rainfall in North China is simulated. Therefore, Equatorial East Pacific Ocean SSTA and IOD have a synergic effect.
基金supported by the National Natural Science Foundation of China(Grant No.40975039)
文摘In China's Mainland, the summer monsoon rainy band is referred to as the mei-yu precipitation front, which extends northward from South China to the Yangtze River, Huaihe River, and Yellow River, depending on the season. This paper describes the structure of the mei-yu front associated with a persistent heavy rainfall event that occurred in the summer of 2007. The mei-yu front occurs when the subtropical oceanic warm, moist air mass and the extra tropical continental dry, cold air mass converge on the lee side of the Tibetan Plateau. The authors defined the equivalent temperature using two terms of dry-air temperature and the specific humidity and calculated its horizontal gradient to indicate the mei-yu front. The vertical structure of the mei-yu front and the moist thermal winds surrounding it were examined based on the equivalent temperature.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41130103, 41210007)
文摘This paper revealed the climatic change characteristics of fog and haze of different levels over North China and Huang-Huai area(NCHH).It was found that the haze-prone period has changed from winter into a whole year,and the haze days(HD)in winter have increased significantly.The foggy days(FD)are half of HD.There are little difference on the number of days and trends of fog at various levels.The HD and FD show no obvious positive correlation until the 1980s.Fog has larger spatial scale,showing more in the south than in the north.Haze occurs mainly around large cities with a discrete distribution.In the background of weakened East Asian Winter Monsoon(EAWM)and sufficient particulate matter,the negative correlation between haze and wind speed is weakened,but the positive correlation between haze and moisture conditions(precipitation and humidity)is significantly strengthened.In recent years,small wind and variability appear frequently.Meanwhile,as the stable source and strong moisture absorption of the aerosol particles,the moisture condition becomes one key control factor in the haze,especially wet haze with less visibility.In contrast,the FD presents a stable positive correlation with precipitation and relative humidity,but has no obvious negative correlation with wind speed.
基金supported by National Basic Research Program of China (Grant No. 2007CB815900)National Natural Science Foundation of China (Grant No. 40771072)the Discretionary Foundation of State Key Laboratory of Marine Geology,Tongji University (Grant No. MG20080207)
文摘Pollen grains deposited in marine sediments are transported from land to sea by wind or surface water flows.We analyzed pollen collected from the air and seawater from the coast of the Yellow Sea near China and into the western Pacific Ocean between December 2008 and January 2009 during the cruise "KX08-973".Results showed that abundant pollen grains of Artemisia and Chenopodiaceae were probably transported to the continental shelf of the East China Sea,the East Philippine Sea and the equatorial regions of the Pacific Ocean by the winter monsoon.Some pollen may have even traveled over 2000 km from the East Asia continent to the tropical Pacific Ocean.However,a gradual decline of temperate components and an increase in tropical components was observed towards the tropical regions.Fern spores were rare in the air samples,but much more abundant in seawater samples,even though they were collected in nearly the same areas,which indicates that most fern spores were carried to the ocean by flowing water.These results suggest that the winter monsoon may be the major pollen carrier and transporter in the study area during winter.