The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equatio...The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.展开更多
With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of no...With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of nonlinear partial differential equations (NPDFs). The coupled Drinfel'd-Sokolov-Wilson equation is chosen to illustrate the method. As a result, we can successfully obtain abundant new doubly periodic solutions without calculating various Jacobi elliptic functions. In the limit cases, the rational solitary wave solutions and trigonometric function solutions are obtained as well.展开更多
In this paper, with the aid of symbolic computation, we present a new method for constructing soliton solutions to nonlinear differentiM-difference equations. And we successfully solve Toda and mKdV lattice.
Using the standard truncated Painlev? analysis, we can obtain a B?cklund transformation of the (3+1)-dimensional Nizhnik?Novikov?Veselov (NNV) equation and get some (3+1)-dimensional single-, two- and three-soliton so...Using the standard truncated Painlev? analysis, we can obtain a B?cklund transformation of the (3+1)-dimensional Nizhnik?Novikov?Veselov (NNV) equation and get some (3+1)-dimensional single-, two- and three-soliton solutions and some new types of multisoliton solutions of the (3+1)-dimensional NNV system from the B?cklund transformation and the trivial vacuum solution.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.展开更多
We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this...We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released.展开更多
Searching for special solitary wave solutions with compact support is of important significance in soliton theory. In this paper, to understand the role of nonlinear dispersion in pattern formation, a family of the re...Searching for special solitary wave solutions with compact support is of important significance in soliton theory. In this paper, to understand the role of nonlinear dispersion in pattern formation, a family of the regularized long-wave Boussinesq equations with fully nonlinear dispersion (simply called equations), ( const.), is studied. New solitary wave solutions with compact support of equations are found. In addition we find another compacton solutions of the two special cases, equation and equation. It is found that the nonlinear dispersion term in a nonlinear evolution equation is not a necessary condition of that it possesses compacton solutions.展开更多
The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth ...The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth to point that the solutions for the soliton hierarchy are reduced to solving the compatible Hamiltonian systems of ordinary differential equations.展开更多
It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair,from which a method to constrain the integrable sys...It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair,from which a method to constrain the integrable system to a lower-dimensional or fewer variable integrable system is proposed.A direct result is that the n-soliton solutions of the KdV hierarchy can be completely depicted by a series of ordinary differential equations(ODEs),which may be gotten by a simple but unfamiliar Lax pair.Furthermore the AKNS hierarchy is constrained to a series of univariate integrable hierarchies.The key is a special form of Lax pair for the AKNS hierarchy.It is proved that under the constraints all equations of the AKNS hierarchy are linearizable.展开更多
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain...A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.展开更多
In this paper, to construct exact solution of nonlinear partial differential equation, an easy-to-use approach is proposed. By means of the transformation of the independent variables and the travelling wave transform...In this paper, to construct exact solution of nonlinear partial differential equation, an easy-to-use approach is proposed. By means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. To solve the ordinary differential equation, we assume the soliton solution in the explicit expression and obtain the travelling wave solution. By the transformation back to the original independent variables, the soliton solution of the original partial differential equation is derived. We investigate the short wave model for the Camassa-Holm equation and the Degasperis-Procesi equation respectively. One-cusp soliton solution of the Camassa-Flolm equation is obtained. One-loop soliton solution of the Degasperis- Procesi equation is also obtained, the approximation of which in a closed form can be obtained firstly by the Adomian decomposition method. The obtained results in a parametric form coincide perfectly with those given in the present reference. This illustrates the efficiency and reliability of our approach.展开更多
In this paper, by using symbolic and algebra computation, Chen and Wang's multiple R/ccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact so...In this paper, by using symbolic and algebra computation, Chen and Wang's multiple R/ccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact solutions of the (2+1)-dimensional Breaking soliton equation are derived by using the extended multiple Riccatl equations expansion method.展开更多
Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equa...Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equationwith non-vanishing boundary conditions if we prove that these conditions can be demonstrated by the GLM equation,which determines the kernel function N(x,y,t)in according to the inverse scattering method.展开更多
In this paper,based on the forms and structures of Wronskian solutions to soliton equations,a Wronskianform expansion method is presented to find a new class of interaction solutions to the Kadomtsev-Petviashvili equa...In this paper,based on the forms and structures of Wronskian solutions to soliton equations,a Wronskianform expansion method is presented to find a new class of interaction solutions to the Kadomtsev-Petviashvili equation.One characteristic of the method is that Wronskian entries do not satisfy linear partial differential equation.展开更多
For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painleve analysis shows that this system admits t...For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painleve analysis shows that this system admits the Painleve property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap two head-on solitons and two head-on two-peak solitons; (v) Two (vi) Decomposition phenomenon of one soliton into two solitons. phenomenon between two solitons; (iv) Collision of different types of interactions of the three solitons; ultrashort-pulse propagation in the inhomogeneous multi-component The results might be useful in the study on the nonlinear media.展开更多
With the aid of an improved projective approach and a linear variable separation method, new types of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function s...With the aid of an improved projective approach and a linear variable separation method, new types of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (2+1)-dimensional Korteweg-de Vries system are derived. Usually, in terms of solitary wave solutions and rational function solutions, one can find some important localized excitations. However, based on the derived periodic wave solution in this paper, we find that some novel and significant localized coherent excitations such as dromions, peakons, stochastic fractal patterns, regular fractal patterns, chaotic line soliton patterns as well as chaotic patterns exist in the KdV system as considering appropriate boundary conditions and/or initial qualifications.展开更多
An analytic method, i.e. the homotopy analysis method, was applied for constructing the solutions of the short waves model equations associated with the Degasperis-Procesi (DP) shallow water waves equation. The explic...An analytic method, i.e. the homotopy analysis method, was applied for constructing the solutions of the short waves model equations associated with the Degasperis-Procesi (DP) shallow water waves equation. The explicit analytic solutions of loop soliton governing the propagation of short waves were obtained. By means of the transformation of independent variables, an analysis one-loop soliton solution expressed by a series of exponential functions was obtained, which agreed well with the exact solution. The results reveal the validity and great potential of the homotopy analysis method in solving complicated solitary water wave problems.展开更多
A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate bi...A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate binary nonlinearization for the associated arbitrary order matrix spectral problem. The resulting spatial and temporal constrained flows are shown to provide integrable decompositions of the multicomponent AKNS equations.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 40876010the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KZCX2-YW-Q03-08+3 种基金the R & D Special Fund for Public Welfare Industry (meteorology) under Grant No. GYHY200806010the LASG State Key Laboratory Special Fundthe E-Institutes of Shanghai Municipal Education Commission under Grant No. E03004the Natural Science Foundation of Zhejiang Province under Grant No. Y6090164
文摘The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.
基金supported by National Natural Science Foundation of China under Grant No.10771118
文摘With the aid of computerized symbolic computation, an improved F-expansion method is presented to uniformly construct more new exact doubly periodic solutions in terms of rational formal Jscobi elliptic function of nonlinear partial differential equations (NPDFs). The coupled Drinfel'd-Sokolov-Wilson equation is chosen to illustrate the method. As a result, we can successfully obtain abundant new doubly periodic solutions without calculating various Jacobi elliptic functions. In the limit cases, the rational solitary wave solutions and trigonometric function solutions are obtained as well.
基金National Natural Science Foundation of China under Grant Nos.60774041 and 10671121
文摘In this paper, with the aid of symbolic computation, we present a new method for constructing soliton solutions to nonlinear differentiM-difference equations. And we successfully solve Toda and mKdV lattice.
文摘Using the standard truncated Painlev? analysis, we can obtain a B?cklund transformation of the (3+1)-dimensional Nizhnik?Novikov?Veselov (NNV) equation and get some (3+1)-dimensional single-, two- and three-soliton solutions and some new types of multisoliton solutions of the (3+1)-dimensional NNV system from the B?cklund transformation and the trivial vacuum solution.
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.
文摘We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released.
基金National Key Basic Research Development Project Program of China under Grant,Doctoral Foundation of China under Grant,国家自然科学基金
文摘Searching for special solitary wave solutions with compact support is of important significance in soliton theory. In this paper, to understand the role of nonlinear dispersion in pattern formation, a family of the regularized long-wave Boussinesq equations with fully nonlinear dispersion (simply called equations), ( const.), is studied. New solitary wave solutions with compact support of equations are found. In addition we find another compacton solutions of the two special cases, equation and equation. It is found that the nonlinear dispersion term in a nonlinear evolution equation is not a necessary condition of that it possesses compacton solutions.
基金the Youth Fund of Zhoukou Normal University(ZKnuqn200606)
文摘The soliton hierarchy associated with a Schrodinger type spectral problem with four potentials is decomposed into a class of new finite-dimensional Hamiltonian systems by using the nonlinearized approach. It is worth to point that the solutions for the soliton hierarchy are reduced to solving the compatible Hamiltonian systems of ordinary differential equations.
基金Supported by National Natural Science Foundation of China under Grant No.10735030Natural Science Foundation of Zhejiang Province under Grant Nos.R609077,Y6090592National Science Foundation of Ningbo City under Grant Nos.2009B21003,2010A610103, 2010A610095
文摘It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair,from which a method to constrain the integrable system to a lower-dimensional or fewer variable integrable system is proposed.A direct result is that the n-soliton solutions of the KdV hierarchy can be completely depicted by a series of ordinary differential equations(ODEs),which may be gotten by a simple but unfamiliar Lax pair.Furthermore the AKNS hierarchy is constrained to a series of univariate integrable hierarchies.The key is a special form of Lax pair for the AKNS hierarchy.It is proved that under the constraints all equations of the AKNS hierarchy are linearizable.
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112, 10871040) Acknowledgement The authors are in debt to thank the helpful discussions with Prof Qin and Dr A P Deng.
文摘A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.
基金the State Key Basic Research Program of China under Grant No.2004CB318000the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060269006
文摘In this paper, to construct exact solution of nonlinear partial differential equation, an easy-to-use approach is proposed. By means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. To solve the ordinary differential equation, we assume the soliton solution in the explicit expression and obtain the travelling wave solution. By the transformation back to the original independent variables, the soliton solution of the original partial differential equation is derived. We investigate the short wave model for the Camassa-Holm equation and the Degasperis-Procesi equation respectively. One-cusp soliton solution of the Camassa-Flolm equation is obtained. One-loop soliton solution of the Degasperis- Procesi equation is also obtained, the approximation of which in a closed form can be obtained firstly by the Adomian decomposition method. The obtained results in a parametric form coincide perfectly with those given in the present reference. This illustrates the efficiency and reliability of our approach.
基金The project partially supported by National Natural Science Foundation of China under Grant No. 10471143 and the State 973 Project under Grant No. 2004CB318001 The authors are very grateful to Prof. Hong-Bo Li, Yong Chen, Zhen-Ya Yan, and Zhuo-Sheng Lii for their kind help and valuable suggestions. They also thank Prof. En-Gui Fan and Prof. Chun-Ping Liu for their constructive suggestions about the solutions of Riccati equation.
文摘In this paper, by using symbolic and algebra computation, Chen and Wang's multiple R/ccati equations rational expansion method was further extended. Many double soliton-like and other novel combined forms of exact solutions of the (2+1)-dimensional Breaking soliton equation are derived by using the extended multiple Riccatl equations expansion method.
基金the Huazhong University of Science and Technology under Grant No.0101011110National Natural Science Foundation of China under Grant No.10375041
文摘Using the integral representation of the Jost solution,we deduce some conditions as the kernel functionN(x,y,t)if the Jost solution satisfies the two Lax equations.Then we verify the multi-soliton solution of NLS equationwith non-vanishing boundary conditions if we prove that these conditions can be demonstrated by the GLM equation,which determines the kernel function N(x,y,t)in according to the inverse scattering method.
基金Supported by the Young Teachers Science Foundation of Beijing University of Civil Engineering and Architecture under Grant No.100602707
文摘In this paper,based on the forms and structures of Wronskian solutions to soliton equations,a Wronskianform expansion method is presented to find a new class of interaction solutions to the Kadomtsev-Petviashvili equation.One characteristic of the method is that Wronskian entries do not satisfy linear partial differential equation.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023by the Open Fund No.BUAA-SKLSDE-09KF-04+2 种基金Supported Project No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsby the National Basic Research Program of China (973 Program) under Grant No.2005CB321901by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painleve analysis shows that this system admits the Painleve property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap two head-on solitons and two head-on two-peak solitons; (v) Two (vi) Decomposition phenomenon of one soliton into two solitons. phenomenon between two solitons; (iv) Collision of different types of interactions of the three solitons; ultrashort-pulse propagation in the inhomogeneous multi-component The results might be useful in the study on the nonlinear media.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant No. Y604106, the Foundation of New Century "151 Talent Engineering" of Zhejiang Province, the Scientific Research Foundation of Key Discipline of Zhejiang Province, and the Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ05005 The authors are in debt to Profs. J.P. Fang, C.Z. Xu, and J.F. Zhang, and Drs. H.P. Zhu, Z.Y. Ma, and W.H. Huang for their fruitful discussions.
文摘With the aid of an improved projective approach and a linear variable separation method, new types of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (2+1)-dimensional Korteweg-de Vries system are derived. Usually, in terms of solitary wave solutions and rational function solutions, one can find some important localized excitations. However, based on the derived periodic wave solution in this paper, we find that some novel and significant localized coherent excitations such as dromions, peakons, stochastic fractal patterns, regular fractal patterns, chaotic line soliton patterns as well as chaotic patterns exist in the KdV system as considering appropriate boundary conditions and/or initial qualifications.
基金Supported by the Natural Science Foundation of China under the grant 11026165 and 11072053Doctaral Fund of Ministry of Education of China under the grant 20100041120037the Fundamental Research Funds for the Central Universities
文摘An analytic method, i.e. the homotopy analysis method, was applied for constructing the solutions of the short waves model equations associated with the Degasperis-Procesi (DP) shallow water waves equation. The explicit analytic solutions of loop soliton governing the propagation of short waves were obtained. By means of the transformation of independent variables, an analysis one-loop soliton solution expressed by a series of exponential functions was obtained, which agreed well with the exact solution. The results reveal the validity and great potential of the homotopy analysis method in solving complicated solitary water wave problems.
基金Research Grants Council of Hong Kong(CERG 9040466)City University of Hong Kong(SRGs 7001041,7001178)+2 种基金National Science Foundation of China(No.19801031)Special Grant of Excellent PhD Thesis(No.200013)Special Funds for Major State Basjc Reaca
文摘A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate binary nonlinearization for the associated arbitrary order matrix spectral problem. The resulting spatial and temporal constrained flows are shown to provide integrable decompositions of the multicomponent AKNS equations.