Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark...Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.展开更多
One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equatio...One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions.展开更多
The structure aperiodicities can influence seriously the features of motion of soliton excited in the α-helix protein molecules with three channels. We study the influence of structure aperiodicities on the features ...The structure aperiodicities can influence seriously the features of motion of soliton excited in the α-helix protein molecules with three channels. We study the influence of structure aperiodicities on the features of the soliton in the improved model by numerical simulation and Runge-Kulta method. The results obtained show that the new soliton is very robust against the structure aperiodieities including large disorder in the sequence of mass of the amino acids and fluctuations of spring constant, coupling constant, dipole-dipole interactional constant, ground state energy and chain-chain interaction. However, very strong structure aperiodieities can also destroy the stability of the soliton in the α-helix protein molecules.展开更多
In this paper, an explicit N-fold Darboux transformation with multi-parameters for both a (1+1)- dimensional Broer-Kaup (BK) equation and a (1+1)-dimensional high-order Broer-Kaup equation is constructed with ...In this paper, an explicit N-fold Darboux transformation with multi-parameters for both a (1+1)- dimensional Broer-Kaup (BK) equation and a (1+1)-dimensional high-order Broer-Kaup equation is constructed with the help of a gauge transformation of their spectral problems. By using the Darboux transformation and new basic solutions of the spectral problems, 2N-soliton solutions of the BK equation, the high-order BK equation, and the Kadomtsev-Petviashvili (KP) equation are obtained.展开更多
Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the sep...Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through.展开更多
The dispersion-managed soliton (DMS) transmission model of dispersion-managed systems is established,and the intrachannel DMS interactions equation is obtained.The impact of soliton interactions on DMS systems are num...The dispersion-managed soliton (DMS) transmission model of dispersion-managed systems is established,and the intrachannel DMS interactions equation is obtained.The impact of soliton interactions on DMS systems are numerically investigated.Finally,the relationships of the collision length changing with map strength are revealed.展开更多
Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular solito...Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular soliton, negaton, and positon solutions are computed for the eKdV equation. We rediscover the soliton solution with finiteamplitude in [A.V. Slyunyaev and E.N. Pelinovskii, J. Exp. Theor. Phys. 89 (1999) 173] and discuss the difference between this soliton and the singular soliton. We clarify the relationship between the exact solutions of the eKdV equation and the spectral parameter. Moreover, the interactions of singular two solitons, positon and negaton, positon and soliton, and two positons are studied in detail.展开更多
Firstly,the JME(Jones matrix eigen) method is used to simulate the statistical characteristics of first- and second-order PMD in dispersion management system. Then,with help of the CNLSE (coupled nonlinear Schrodin...Firstly,the JME(Jones matrix eigen) method is used to simulate the statistical characteristics of first- and second-order PMD in dispersion management system. Then,with help of the CNLSE (coupled nonlinear Schrodinger equations) ,the effects of PMD on DMS (dispersion managed soliton) transmission is studied with a variational method. The simplified relationships of the statistical parameters of second-order and first-order of PMD in dispersion management system have been gotten,from which the detailed information of second-order can be obtained, if the condition of DGD is given. The results have shown that the first and second-order PMD (polarization mode dispersion) vectors influence the evolution of energy and Mean square of time displacement of DMS in high-speed bit rates systems. When DPMD^1st〉0.3 ps/km^1/2 ,we must consider some means of control(for example the filter) to restrain the PMD.展开更多
Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based...Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.展开更多
The qualitative theory of differential equations is applied to the Ostrovsky equation. The cusped soliton and loop-soliton solutions of the Ostrovsky equation are obtained. Asymptotic behavior of eusped soliton soluti...The qualitative theory of differential equations is applied to the Ostrovsky equation. The cusped soliton and loop-soliton solutions of the Ostrovsky equation are obtained. Asymptotic behavior of eusped soliton solutions is given. Numerical simulations are provided for cusped solitons and so-called loop-solitons of the Ostrovsky equation.展开更多
Based on the picture of nonJinear and non-parabolic symmetry response, i.e., Δn2 (I) ≈ ρ(ao + a1x - a2 x^2), we propose a model for the transversal beam intensity distribution of the nonlocal spatial soliton. ...Based on the picture of nonJinear and non-parabolic symmetry response, i.e., Δn2 (I) ≈ ρ(ao + a1x - a2 x^2), we propose a model for the transversal beam intensity distribution of the nonlocal spatial soliton. In this model, as a convolution response with non-parabolic symmetry, Δn2 (I)≈ρ(b0+ b1f - b2 f^2 with b2/b1 〉 0 is assumed. Furthermore, instead of the wave function Ψ, the high-order nonlinear equation for the beam intensity distribution f has been derived and the bell-shaped soliton solution with the envelope form has been obtained. The results demonstrate that, since the existence of the terms of non-parabolic response, the nonlocal spatial soliton has the bistable state solution. If the frequency shift of wave number β satisfies 0 〈 4(β - ρbo/μ) 〈 3η0/8α, the bistable state soliton solution is stable against perturbation. It should be emphasized that the soliton solution arising from a parabolic-symmetry response kernel is trivial. The sufficient condition for the existence of bistable state soliton solution b2/b1〉 0 has been demonstrated.展开更多
Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kau...Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kaup system whose Lax pair can be derived by the Ablowitz-Kaup-Newell-Segur technology. With symbolic computation, based on the aforementioned Lax pair, the N-fold Darboux transformation is constructed with a gauge transformation and the multi-soliton solutions are obtained. Finally, the elastic interactions of the two-soliton solutions (including the head-on and overtaking collisions) for the WBK system are graphically studied. Those multi-soliton collisions can beused to illustrate the bidirectional propagation of the waves in shallow water.展开更多
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi...A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.展开更多
By means of the standard truncated Painlevé expansion and a special B?cklund transformation, the higher-dimensional coupled Burgers system (HDCB) is reduced to a linear equation, and an exact multisoliton excitat...By means of the standard truncated Painlevé expansion and a special B?cklund transformation, the higher-dimensional coupled Burgers system (HDCB) is reduced to a linear equation, and an exact multisoliton excitation is derived. The evolution properties of the multisoliton excitation are investigated and some novel features or interesting behaviors are revealed. The results show that after interactions for dromion-dromion, solitoff-solitoff, and solitoff-dromion, they are combined with some new types of localized structures, which are similar to classic particles with completely nonelastic behaviors.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10674113, Foundation of New Century Excellent Talent under Grant No. NCET-060707, Natural Science Foundation of Hunan Province of China under Grant No. 06JJ50006, the Scientific Research Foundation of Education Bureau of Hunan Province of China under Grant Nos. 02C573 and 04A058
文摘Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10474076 and 10375041
文摘One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions.
基金supported by the National "973" Project of China under Grant No. 2007CB936103
文摘The structure aperiodicities can influence seriously the features of motion of soliton excited in the α-helix protein molecules with three channels. We study the influence of structure aperiodicities on the features of the soliton in the improved model by numerical simulation and Runge-Kulta method. The results obtained show that the new soliton is very robust against the structure aperiodieities including large disorder in the sequence of mass of the amino acids and fluctuations of spring constant, coupling constant, dipole-dipole interactional constant, ground state energy and chain-chain interaction. However, very strong structure aperiodieities can also destroy the stability of the soliton in the α-helix protein molecules.
基金supported by the State Key Basic Research Program of China under Grant No.2004CB318000the Research Fund for the Doctoral Program of Higher Education of China under Grant No.20060269006
文摘In this paper, an explicit N-fold Darboux transformation with multi-parameters for both a (1+1)- dimensional Broer-Kaup (BK) equation and a (1+1)-dimensional high-order Broer-Kaup equation is constructed with the help of a gauge transformation of their spectral problems. By using the Darboux transformation and new basic solutions of the spectral problems, 2N-soliton solutions of the BK equation, the high-order BK equation, and the Kadomtsev-Petviashvili (KP) equation are obtained.
基金National Basic Research Program of China under Grant No.2006CB921605the Science Research Foundation of Shunde College of China
文摘Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through.
文摘The dispersion-managed soliton (DMS) transmission model of dispersion-managed systems is established,and the intrachannel DMS interactions equation is obtained.The impact of soliton interactions on DMS systems are numerically investigated.Finally,the relationships of the collision length changing with map strength are revealed.
基金supported by National Natural Science Foundation of China under Grant No.10601028
文摘Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular soliton, negaton, and positon solutions are computed for the eKdV equation. We rediscover the soliton solution with finiteamplitude in [A.V. Slyunyaev and E.N. Pelinovskii, J. Exp. Theor. Phys. 89 (1999) 173] and discuss the difference between this soliton and the singular soliton. We clarify the relationship between the exact solutions of the eKdV equation and the spectral parameter. Moreover, the interactions of singular two solitons, positon and negaton, positon and soliton, and two positons are studied in detail.
文摘Firstly,the JME(Jones matrix eigen) method is used to simulate the statistical characteristics of first- and second-order PMD in dispersion management system. Then,with help of the CNLSE (coupled nonlinear Schrodinger equations) ,the effects of PMD on DMS (dispersion managed soliton) transmission is studied with a variational method. The simplified relationships of the statistical parameters of second-order and first-order of PMD in dispersion management system have been gotten,from which the detailed information of second-order can be obtained, if the condition of DGD is given. The results have shown that the first and second-order PMD (polarization mode dispersion) vectors influence the evolution of energy and Mean square of time displacement of DMS in high-speed bit rates systems. When DPMD^1st〉0.3 ps/km^1/2 ,we must consider some means of control(for example the filter) to restrain the PMD.
基金The project supported by the Natural Science Foundation of Inner Mongolia under Grant No. 200408020113 and National Natural Science Foundation of China under Grant No. 40564001
文摘Using extended homogeneous balance method and variable separation hypothesis, we found new variable separation solutions with three arbitrary functions of the (2+1)-dimensional dispersive long-wave equations, Based on derived solutions, we revealed abundant oscillating solitons such as dromion, multi-dromion, solitoff, solitary waves, and so on, by selecting appropriate functions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10961011 and 60964006
文摘The qualitative theory of differential equations is applied to the Ostrovsky equation. The cusped soliton and loop-soliton solutions of the Ostrovsky equation are obtained. Asymptotic behavior of eusped soliton solutions is given. Numerical simulations are provided for cusped solitons and so-called loop-solitons of the Ostrovsky equation.
基金The project supported by National Natural Science Foundation of China under Grant No.10574163
文摘Based on the picture of nonJinear and non-parabolic symmetry response, i.e., Δn2 (I) ≈ ρ(ao + a1x - a2 x^2), we propose a model for the transversal beam intensity distribution of the nonlocal spatial soliton. In this model, as a convolution response with non-parabolic symmetry, Δn2 (I)≈ρ(b0+ b1f - b2 f^2 with b2/b1 〉 0 is assumed. Furthermore, instead of the wave function Ψ, the high-order nonlinear equation for the beam intensity distribution f has been derived and the bell-shaped soliton solution with the envelope form has been obtained. The results demonstrate that, since the existence of the terms of non-parabolic response, the nonlocal spatial soliton has the bistable state solution. If the frequency shift of wave number β satisfies 0 〈 4(β - ρbo/μ) 〈 3η0/8α, the bistable state soliton solution is stable against perturbation. It should be emphasized that the soliton solution arising from a parabolic-symmetry response kernel is trivial. The sufficient condition for the existence of bistable state soliton solution b2/b1〉 0 has been demonstrated.
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006,Chinese Ministry of Education
文摘Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kaup system whose Lax pair can be derived by the Ablowitz-Kaup-Newell-Segur technology. With symbolic computation, based on the aforementioned Lax pair, the N-fold Darboux transformation is constructed with a gauge transformation and the multi-soliton solutions are obtained. Finally, the elastic interactions of the two-soliton solutions (including the head-on and overtaking collisions) for the WBK system are graphically studied. Those multi-soliton collisions can beused to illustrate the bidirectional propagation of the waves in shallow water.
基金the Natural Science Foundation of Shandong Province under Grant No.Q2006A04
文摘A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.
文摘By means of the standard truncated Painlevé expansion and a special B?cklund transformation, the higher-dimensional coupled Burgers system (HDCB) is reduced to a linear equation, and an exact multisoliton excitation is derived. The evolution properties of the multisoliton excitation are investigated and some novel features or interesting behaviors are revealed. The results show that after interactions for dromion-dromion, solitoff-solitoff, and solitoff-dromion, they are combined with some new types of localized structures, which are similar to classic particles with completely nonelastic behaviors.