Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled ...Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.展开更多
A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Bou...A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources.展开更多
A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamilto...A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy.展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi...A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.展开更多
The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice ...The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.展开更多
In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained...In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).展开更多
In this paper, we apply the source generation procedure to the coupled 2D Toda lattice equation (also called Pfaffianized 2D Toda lattice), then we get a more generalized system which is the coupled 2D Toda lattice ...In this paper, we apply the source generation procedure to the coupled 2D Toda lattice equation (also called Pfaffianized 2D Toda lattice), then we get a more generalized system which is the coupled 2D Toda lattice with self-consistent sources (p-2D TodaESCS), and a pfaman type solution of the new system is given. Consequently, by using the reduction of the pfaffian solution to the determinant form, this new system can not only be reduced to the 2D TodaESCS, but be reduced to the coupled 2D Toda lattice equation. This result indicates that the p-2D TodaESCS is also a pfafilan version of the 2D TodaESCS, which implies the commutativity between the source generation procedure and Pfaffianization is valid to the semi-discrete soliton equation.展开更多
The effect of Dzyaloshinskii-Moriya (D-M) interaction on the bistable nano-scale soliton switching offers the possiblity of developing a new innovative approach for data storage technology. The dynamics of Heisenber...The effect of Dzyaloshinskii-Moriya (D-M) interaction on the bistable nano-scale soliton switching offers the possiblity of developing a new innovative approach for data storage technology. The dynamics of Heisenberg ferromagnetic spin system is expressed in terms of generalized inhomogeneous higher order nonlinear Schr6dinger (NLS) equation. The bistable soliton switching in the ferromagnetic medium is established by solving the associated coupled evolution equations for amplitude and velocity of the soliton using the fourth order Runge-Kutta method numerically.展开更多
This article amis at revealing dynamical behavior of a coupled Camassa–Holm type equation, which was proposed by Geng and Wang based on a 4×4 matrix spectral problem with two potentials. Its kink and anti-kink s...This article amis at revealing dynamical behavior of a coupled Camassa–Holm type equation, which was proposed by Geng and Wang based on a 4×4 matrix spectral problem with two potentials. Its kink and anti-kink solutions are presented explicitly. In particular, some exact multi-kink and anti-kink wave solutions are discussed and under some conditions, the kink and anti-kinks look like hat-shape solitons. The dynamic characters of the obtained solutions are investigated by figures. The method used in this paper can be widely applied to looking for the multi-kinks for Camassa–Holm type equations possessing cubic nonlinearity.展开更多
文摘Based on the Pfaffian derivative formulae,a Grammian determinant solution for a(3+1)-dimensionalsoliton equation is obtained.Moreover,the Pfaffianization procedure is applied for the equation to generate a newcoupled system.At last,a Gram-type Pfaffian solution to the new coupled system is given.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101by Key Disciplines of Shanghai Municipality (S30104)
文摘A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources.
基金Supported by the Natural Science Foundation of China under Grant Nos. 61072147, 11071159, and 10971031by the Natural Science Foundation of Shanghai and Zhejiang Province under Grant Nos. 09ZR1410800 and Y6100791+1 种基金the Shanghai Shuguang Tracking Project under Grant No. 08GG01the Shanghai Leading Academic Discipline Project under Grant No. J50101
文摘A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
基金the Natural Science Foundation of Shandong Province under Grant No.Q2006A04
文摘A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.
基金*The project supported by the National Key Basic Research Development of China under Grant No. N1998030600 and National Natural Science Foundation of China under Grant No. 10072013
文摘The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.
基金Supported by the Research Work of Liaoning Provincial Development of Education under Grant No. 2008670
文摘In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).
基金Supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China under Grant No. 07XNA013
文摘In this paper, we apply the source generation procedure to the coupled 2D Toda lattice equation (also called Pfaffianized 2D Toda lattice), then we get a more generalized system which is the coupled 2D Toda lattice with self-consistent sources (p-2D TodaESCS), and a pfaman type solution of the new system is given. Consequently, by using the reduction of the pfaffian solution to the determinant form, this new system can not only be reduced to the 2D TodaESCS, but be reduced to the coupled 2D Toda lattice equation. This result indicates that the p-2D TodaESCS is also a pfafilan version of the 2D TodaESCS, which implies the commutativity between the source generation procedure and Pfaffianization is valid to the semi-discrete soliton equation.
基金support by NBHM in the form of major research project, BRNS in the form of Young Scientist Research Award, India and ICTP, Italy in the form of Junior Associateshipfinancial support from CSIR, India in the form of Senior Research Fellowship
文摘The effect of Dzyaloshinskii-Moriya (D-M) interaction on the bistable nano-scale soliton switching offers the possiblity of developing a new innovative approach for data storage technology. The dynamics of Heisenberg ferromagnetic spin system is expressed in terms of generalized inhomogeneous higher order nonlinear Schr6dinger (NLS) equation. The bistable soliton switching in the ferromagnetic medium is established by solving the associated coupled evolution equations for amplitude and velocity of the soliton using the fourth order Runge-Kutta method numerically.
基金Supported by the National Natural Science Foundation of China under Grant No.11261037the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No.2014MS0111+1 种基金the Caoyuan Yingcai Program of Inner Mongolia Autonomous Region under Grant No.CYYC2011050the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant No.NJYT14A04
文摘This article amis at revealing dynamical behavior of a coupled Camassa–Holm type equation, which was proposed by Geng and Wang based on a 4×4 matrix spectral problem with two potentials. Its kink and anti-kink solutions are presented explicitly. In particular, some exact multi-kink and anti-kink wave solutions are discussed and under some conditions, the kink and anti-kinks look like hat-shape solitons. The dynamic characters of the obtained solutions are investigated by figures. The method used in this paper can be widely applied to looking for the multi-kinks for Camassa–Holm type equations possessing cubic nonlinearity.