The structure aperiodicities can influence seriously the features of motion of soliton excited in the α-helix protein molecules with three channels. We study the influence of structure aperiodicities on the features ...The structure aperiodicities can influence seriously the features of motion of soliton excited in the α-helix protein molecules with three channels. We study the influence of structure aperiodicities on the features of the soliton in the improved model by numerical simulation and Runge-Kulta method. The results obtained show that the new soliton is very robust against the structure aperiodieities including large disorder in the sequence of mass of the amino acids and fluctuations of spring constant, coupling constant, dipole-dipole interactional constant, ground state energy and chain-chain interaction. However, very strong structure aperiodieities can also destroy the stability of the soliton in the α-helix protein molecules.展开更多
We perform langevin dynamics simulation for envelope solitons in an FPU-β lattice,with the nearestneighborinteraction and quartic anharmonicity.We get the motion equations of our discrete system by adding noiseand da...We perform langevin dynamics simulation for envelope solitons in an FPU-β lattice,with the nearestneighborinteraction and quartic anharmonicity.We get the motion equations of our discrete system by adding noiseand damping to the set of deterministic motion equations.We define'half-time'as the time when the amplitude of theenvelope soliton decreases by half due to damping.And then the mass,center and half-time of the perturbed envelopesoliton are numerically simulated,beginning with the discrete envelope soliton at rest.Results show successfully hownoise affects behavior of the envelope soliton.展开更多
基金supported by the National "973" Project of China under Grant No. 2007CB936103
文摘The structure aperiodicities can influence seriously the features of motion of soliton excited in the α-helix protein molecules with three channels. We study the influence of structure aperiodicities on the features of the soliton in the improved model by numerical simulation and Runge-Kulta method. The results obtained show that the new soliton is very robust against the structure aperiodieities including large disorder in the sequence of mass of the amino acids and fluctuations of spring constant, coupling constant, dipole-dipole interactional constant, ground state energy and chain-chain interaction. However, very strong structure aperiodieities can also destroy the stability of the soliton in the α-helix protein molecules.
基金Supported by Scientific Research Fund of Hunan Provincial Education Department under Grant No.07B075Interactive Project Fund of Xiangtan University under Grant No.061ND09Initial Scientific Research Fund of Xiangtan University
文摘We perform langevin dynamics simulation for envelope solitons in an FPU-β lattice,with the nearestneighborinteraction and quartic anharmonicity.We get the motion equations of our discrete system by adding noiseand damping to the set of deterministic motion equations.We define'half-time'as the time when the amplitude of theenvelope soliton decreases by half due to damping.And then the mass,center and half-time of the perturbed envelopesoliton are numerically simulated,beginning with the discrete envelope soliton at rest.Results show successfully hownoise affects behavior of the envelope soliton.