期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
超对称Bullough-Dodd模型的prolongation分析
1
作者 王美旭 杨占营 闫长春 《徐州师范大学学报(自然科学版)》 CAS 2001年第3期29-32,共4页
在扭曲仿射代数 A(2 )2 上建立了超对称的 Bullough-Dodd模型 .Prolongation方法的研究表明 ,该模型承认一个 Lax pair,从 Lax意义上证明该模型可积 .另外 ,当该超对称模型的所有费米量为零时 ,该系统就定义了一个新奇的由单标量玻色场... 在扭曲仿射代数 A(2 )2 上建立了超对称的 Bullough-Dodd模型 .Prolongation方法的研究表明 ,该模型承认一个 Lax pair,从 Lax意义上证明该模型可积 .另外 ,当该超对称模型的所有费米量为零时 ,该系统就定义了一个新奇的由单标量玻色场指数相互作用构成的可积模型 .这个发现还打破了长久以来的一种认识 :只有 sinh-Gordon和标准Bullough-Dodd模型是 Liouville模型 . 展开更多
关键词 超对称 prolongation分析 Bullough-Dedd模型 扭曲仿射李代数A2^(2)孤立子散射 可积场理论 完全可积系统 光学
下载PDF
Scattering of Solitons of Modified KdV Equation with Self-consistent Sources 被引量:1
2
作者 ZHANG Da-Jun WU Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第4期809-814,共6页
This paper investigates in detail the dynamics of the modified KdV equation with self-consistent sources, including characteristics of one-soliton, scattering conditions and phase shifts of two solitons, degenerate ca... This paper investigates in detail the dynamics of the modified KdV equation with self-consistent sources, including characteristics of one-soliton, scattering conditions and phase shifts of two solitons, degenerate case of two solitons and "ghost" solitons, etc. Co-moving coordinate frames are employed in asymptotic analysis. 展开更多
关键词 modified kdV equation with self-consistent source soliton scattering
下载PDF
~ Transform Demonstration of Dark Soliton Solutions Found by Inverse Scattering 被引量:2
3
作者 LI Cun YANG Bai-Feng CAI Hao HUANG Nian-Ning 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第2X期244-248,共5页
One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equatio... One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions. 展开更多
关键词 inverse scattering transform dark soliton solultions Liouville theorem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部