A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the cubic-quintic nonlinear Schrdinger equation (CQNLS) with varying dispersion,nonlinearity,and gain...A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the cubic-quintic nonlinear Schrdinger equation (CQNLS) with varying dispersion,nonlinearity,and gain or absorption.Algebraic solitary-wave as well as kink-type solutions in three kinds of optical fibers represented by coefficient varying CQNLS equations are studied in detail.Some new exact solutions of optical solitary wave with a simple analytic form in these models are presented.Appropriate solitary wave solutions are applied to discuss soliton propagation in optical fibres,and the amplification and compression of pulses in optical fibre amplifiers.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10735030the K.C.Wong Magna Fund in Ningbo University and the Scientific Research Foundation of Graduate School of Ningbo University
文摘A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the cubic-quintic nonlinear Schrdinger equation (CQNLS) with varying dispersion,nonlinearity,and gain or absorption.Algebraic solitary-wave as well as kink-type solutions in three kinds of optical fibers represented by coefficient varying CQNLS equations are studied in detail.Some new exact solutions of optical solitary wave with a simple analytic form in these models are presented.Appropriate solitary wave solutions are applied to discuss soliton propagation in optical fibres,and the amplification and compression of pulses in optical fibre amplifiers.