[Objective] This study aimed to analyze the sustainability of cropland use in cropping-pastoral ecotone before and after the Grain-for-Green Policy. [Method] Using Yanchi County in Ningxia Hui Autonomous Region as a c...[Objective] This study aimed to analyze the sustainability of cropland use in cropping-pastoral ecotone before and after the Grain-for-Green Policy. [Method] Using Yanchi County in Ningxia Hui Autonomous Region as a case study area, this investigation used the annual transfer rate of land use types, cropland suitability and emergy analysis to examine the major pressures affecting the sustainable use of cropland before and after the Grain-for-Green Policy. [Result] The expansion of con- struction land onto cropland was significant; the annual cropland area was still larger than the land area suitable for cropping after the policy; agrochemical inputs used for crop production gradually increased and unit crop outputs required more agro- chemical inputs. Cropland use sustainability showed a fluctuating downward trend. [Conclusion] The results imply that the protection of high quality cropland, further im- plementation of the policy and control of agrochemical inputs according to precipita- tion are the main measures needed for sustainable cropland use in cropping-pastoral ecotone.展开更多
Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transform...Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transformation. Lead transfer and the distribution of chemical species throughout the anthropogenic flow were identified in 2010 in China. The results show that 1.85 Mt lead ore was consumed(besides 1.287 Mt imported concentrated ore and 1.39 Mt lead scraps. After undergoing transformations, 3.53 Mt lead entered end services in chemical species of Pb, Pb O2 and PbSO4, altogether accounting for over 80% of the total lead products. Finally, 2.10 Mt ore was emitted into the environment in such species as PbSO4(26%), PbO(19%) and Pb(15%). Lead transfer begins in primary raw material sectors, and then transfers to manufacturing sectors. Lead provides services mainly in such industrial sectors as transportation, electrical power and buildings or construction.展开更多
At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the res...At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.展开更多
Cyhalodiamide is a novel agrochemical which is effective against Lepidoptera pests,including Cnaphalocrocis medinalis,Chilo suppressalis,Pieris rapae,Plutella xylostella,Helicoverpa armigera,etc.In the study,a fast an...Cyhalodiamide is a novel agrochemical which is effective against Lepidoptera pests,including Cnaphalocrocis medinalis,Chilo suppressalis,Pieris rapae,Plutella xylostella,Helicoverpa armigera,etc.In the study,a fast and accurate analytical method was developed to detect cyhalodiamide in Chinese typical rice field environment by a modified Qu ECh ERS(Quick,Easy,Cheap,Effective,Rugged,Safe)method with UPLC-MS/MS(ultra-high performance chromatography-tandem mass spectrometry).The mean recoveries of cyhalodiamide varied from 73.5% to 107.5%,with the RSDs from 1.2% to 10.7%.The limits of determination(LODs)were 0.0005 mg·kg^(-1),and the limits of quantitation(LOQs)were from 0.002 to 0.01 mg·kg^(-1)in all five matrices.This method was used to determine cyhalodiamide residues for studies of the distribution and degradation kinetics in rice field environment.The field trials results showed that cyhalodiamide was easily degradable and the half-lives were4.2–13.6 d in rice straw,8.77 d in paddy soil and 5.37–8.45 d in paddy water,respectively.The final residues of cyhalodiamide in brown rice were below 0.35 mg·kg^(-1).The used dosage of 33.75 g·hm^(-2)with pre-harvest interval(PHI)of 21 d and the maximum residue limit(MRL)of cyhalodiamide in rice at 0.1 mg·kg^(-1)were recommended,which would be safe to human health and environment.The developed analytical method will be useful to monitor cyhalodiamide residues and safety evaluation in rice environment.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promisi...The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.展开更多
Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid p...Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid processing of commercial AM60 alloy were present. The results indicate that the available processing temperature range of AM60 alloy is 170 ℃. The temperature sensitivity of solid fraction decreases with increasing solid fraction or with decreasing temperature above eutectic reaction temperature of AM60 alloy. When the solid fraction φs is 0.4, corresponding processing temperature is 603.8 ℃ and the sensitivity -dφs/dT is 0.0184. The effects of various alloying elements on the solidification behavior and SSM processability of AM60 alloy were calculated with Pandat software.展开更多
An onsite testing based on eight-site air sampling was carried out in an airlaid papermaking workshop in Tianjin, China. By theoretical calculation, super absorbent polymer (SAP) size and its existent state in indoo...An onsite testing based on eight-site air sampling was carried out in an airlaid papermaking workshop in Tianjin, China. By theoretical calculation, super absorbent polymer (SAP) size and its existent state in indoor static airflow were obtained. SAP content in the sampled air was tested through chemical analysis method and found to be 3.0-7.2 times that of the human health limit in production areas. The concentrations of total suspending particles (TSP) and respirable particles were achieved by weighing. Particles of the most concern differ for varied function areas. Particles smaller than 10μm are mostly produced in the main production process, and 73%-90% particles generated in packing areas are larger than 10μm. SAP raw material particles can easily changed to suspending form by inevitable extrusion and frication. Correlation between respirable particles and TSP agrees well with that in atmospheric environment.展开更多
Freeze drying has a deleterious effect on the viability of microorganisms. In front of this difficulty, the present study adopts response surface methodology to optimize the chemical compositions of protective agents ...Freeze drying has a deleterious effect on the viability of microorganisms. In front of this difficulty, the present study adopts response surface methodology to optimize the chemical compositions of protective agents to seek for maximum viability of Bifidobacterium longum BIOMA 5920 during freeze-drying. Through the compara- tive analysis of single protectant, the complex protective agents show better effect on the Bifidobacterium viability. Human-like collagen (HLC), trehalose and glycerol are confirmed as significant factors by Box-Behnken Design. The optimized formula for these three variables is tested as follows: HLC 1.23%, trehalose 11.50% and glycerol 4.65%. Under this formula, the viability is 88.23%, 39.67% higher in comparison to the control. The viable count is 1.07×10 9 cfu·g-1 , greatly exceeding the minimum viable count requirement (10 6 cfu·g-1 ).展开更多
This work, through an empirical research (Jayaram, Kannan and Tan model), aims at analysing, at the same time, the effect of "structural mechanisms" and "relationships building" factors on the value creation pro...This work, through an empirical research (Jayaram, Kannan and Tan model), aims at analysing, at the same time, the effect of "structural mechanisms" and "relationships building" factors on the value creation process in the Supply Chain. The two factors have been chosen among others, as they have been considered able to improve the internal and external processes of the firm and the Supply Chain, and in consequence, able to influence the value creation process of the Supply Chain Management. The research has been directed to the chemical and pharmaceutical sector of the Southern Lazio (Italy) and a factorial analysis, using the software SPSS (16.0) which has been performed in order to verify the influence of these factors in value creation process of the Supply Chain The outcomes confirm the positive contribute in the value creation process for companies that take care of the relationships among the stakeholders in the management process of the supply chain (the "relationships building" factor) and, in parallel with the analysis of the same process, the secondary role of the "structural mechanisms" factor has been highlighted.展开更多
Bionics (the imitation or abstraction of the "inventions" of nature) and, to an even greater extent, syn- thetic biology, will be as relevant to engineering development and industry as the silicon chip was over th...Bionics (the imitation or abstraction of the "inventions" of nature) and, to an even greater extent, syn- thetic biology, will be as relevant to engineering development and industry as the silicon chip was over the last 50 years. Chemical industries already use so-called "white biotechnology" for new processes, new raw materials, and more sustainable use of resources. Synthetic biology is also used for the devel- opment of second-generation biofuels and for harvesting the sun's energy with the help of tailor-made microorganisms or biometrically designed catalysts. The market potential for bionics in medicine, en- gineering processes, and DNA storage is huge. "Moonshot" projects are already aggressively focusing on diseases and new materials, and a US-led competition is currently underway with the aim of creating a thousand new molecules. This article describes a timeline that starts with current projects and then moves on to code engineering projects and their implications, artificial DNA, signaling molecules, and biological circuitry. Beyond these projects, one of the next frontiers in bionics is the design of synthetic metabolisms that include artificial food chains and foods, and the bioengineering of raw materials; all of which will lead to new insights into biological principles. Bioengineering will be an innovation motor just as digitalization is today. This article discusses pertinent examples of bioengineering, particularly the use of alternative carbon-based biofuels and the techniques and perils of cell modification. Big data, analytics, and massive storage are important factors in this next frontier. Although synthetic biology will be as pervasive and transformative in the next 50 years as digitization and the Intemet are today, its ap- plications and impacts are still in nascent stages. This article provides a general taxonomy in which the development of bioengineering is classified in five stages (DNA analysis, bio-circuits, minimal genomes, protocells, xenobiology) from the familiar to the unknown, with implications for safety and security, in- dustrial development, and the development of bioengineering and biotechnology as an interdisciplinary field. Ethical issues and the importance of a public debate about the consequences of bionics and syn- thetic biology are discussed.展开更多
Medicinal plants provide an important source of cure since ancient time. Poor soil resources, scarce and saline water and the harsh environment limited the production of plants in the Arabian Gulf countries. This stud...Medicinal plants provide an important source of cure since ancient time. Poor soil resources, scarce and saline water and the harsh environment limited the production of plants in the Arabian Gulf countries. This study aimed to investigate the production potential of rosemary (Rosmarinus officinalis L.) grown on different growth media under greenhouse conditions. Three growth media agricultural soil, compost and hydroponic system were used, whereas tuff (inert volcanic material) was used as substrate. The result indicated that the high salinity of the agricultural soil limited growth and oil yield in rosemary. Shoot height increased in 11 weeks, by 62%, 65% and 114% in plants grown in agricultural soil, hydroponic system and compost, respectively. Na content in plants grown in agricultural soil was significantly higher than in plants grown in the other treatment. Essential oil yield in plants grown in compost exceeded those in agricultural soil by 114%. Essential oil content (0.66%-1.5% w/w) and chemical constituents concentrations did not change significantly with growth media. The main constituents, more or less, are comparable to essential oils constituents reported from other countries. In comparison, better yields are obtained for individual components of the oils of plants grown under our green house conditions. This study demonstrated the great potential of commercial production of rosemary in the greenhouse without compromising the oil quality and oil yield.展开更多
The industrial chemistry of oils and fats is a mature technology, with decades of experience and refinement behind current practices, therefore some physico-chemical characteristics of eleven vegetable oils sunflower ...The industrial chemistry of oils and fats is a mature technology, with decades of experience and refinement behind current practices, therefore some physico-chemical characteristics of eleven vegetable oils sunflower oil (four different manufacturing companies), olive oil (three different manufacturing companies), corn oil, castor oil, coconut oil and canola oil in Iraqi Kurdistan region (Hawler city center) have been evaluated according to association of official analytical chemists (AOAC) (1995) official methods. The refractive index, viscosity, acid value, peroxide value, pH values, and values of specific gravity of the vegetable oil samples were measured at various different conditions. The results showed that some of the oil samples have unacceptable values in comparison with the standards.展开更多
基金Supported by the National Basic Research Program of China [2009CB421307 (2009-2013)]the Natural Science Foundation of China [40971282(2010-2012)]~~
文摘[Objective] This study aimed to analyze the sustainability of cropland use in cropping-pastoral ecotone before and after the Grain-for-Green Policy. [Method] Using Yanchi County in Ningxia Hui Autonomous Region as a case study area, this investigation used the annual transfer rate of land use types, cropland suitability and emergy analysis to examine the major pressures affecting the sustainable use of cropland before and after the Grain-for-Green Policy. [Result] The expansion of con- struction land onto cropland was significant; the annual cropland area was still larger than the land area suitable for cropping after the policy; agrochemical inputs used for crop production gradually increased and unit crop outputs required more agro- chemical inputs. Cropland use sustainability showed a fluctuating downward trend. [Conclusion] The results imply that the protection of high quality cropland, further im- plementation of the policy and control of agrochemical inputs according to precipita- tion are the main measures needed for sustainable cropland use in cropping-pastoral ecotone.
基金Project(41171361)supported by the National Natural Science Foundation of China
文摘Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transformation. Lead transfer and the distribution of chemical species throughout the anthropogenic flow were identified in 2010 in China. The results show that 1.85 Mt lead ore was consumed(besides 1.287 Mt imported concentrated ore and 1.39 Mt lead scraps. After undergoing transformations, 3.53 Mt lead entered end services in chemical species of Pb, Pb O2 and PbSO4, altogether accounting for over 80% of the total lead products. Finally, 2.10 Mt ore was emitted into the environment in such species as PbSO4(26%), PbO(19%) and Pb(15%). Lead transfer begins in primary raw material sectors, and then transfers to manufacturing sectors. Lead provides services mainly in such industrial sectors as transportation, electrical power and buildings or construction.
基金National Development Programs of Major Basic Research Project(G19990 2 2 2 0 5 -0 3 )
文摘At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.
基金Supported by the National Key Research and Development Plan(2016YFD020120)the Natural Science Foundation of Hunan Province(2017JJ3165)
文摘Cyhalodiamide is a novel agrochemical which is effective against Lepidoptera pests,including Cnaphalocrocis medinalis,Chilo suppressalis,Pieris rapae,Plutella xylostella,Helicoverpa armigera,etc.In the study,a fast and accurate analytical method was developed to detect cyhalodiamide in Chinese typical rice field environment by a modified Qu ECh ERS(Quick,Easy,Cheap,Effective,Rugged,Safe)method with UPLC-MS/MS(ultra-high performance chromatography-tandem mass spectrometry).The mean recoveries of cyhalodiamide varied from 73.5% to 107.5%,with the RSDs from 1.2% to 10.7%.The limits of determination(LODs)were 0.0005 mg·kg^(-1),and the limits of quantitation(LOQs)were from 0.002 to 0.01 mg·kg^(-1)in all five matrices.This method was used to determine cyhalodiamide residues for studies of the distribution and degradation kinetics in rice field environment.The field trials results showed that cyhalodiamide was easily degradable and the half-lives were4.2–13.6 d in rice straw,8.77 d in paddy soil and 5.37–8.45 d in paddy water,respectively.The final residues of cyhalodiamide in brown rice were below 0.35 mg·kg^(-1).The used dosage of 33.75 g·hm^(-2)with pre-harvest interval(PHI)of 21 d and the maximum residue limit(MRL)of cyhalodiamide in rice at 0.1 mg·kg^(-1)were recommended,which would be safe to human health and environment.The developed analytical method will be useful to monitor cyhalodiamide residues and safety evaluation in rice environment.
基金Supported by the National Natural Science Foundation of China(21406006,21576003)the Science and Technology Program of Beijing Municipal Education Commission(KM201510005010)+1 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD20150309)the China Postdoctoral Science Foundation funded project(2015M580954)
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is a significant process in chemical industry, but challenged in some cases. Compared with conventional separation technologies, pervaporation is quite promising in terms of its economical, energy-saving, and eco-friendly advantages. However, this technique has not been used in industry for separating aromatic/aliphatic mixtures yet. One of the main reasons is that the separation performance of existed pervaporation membranes is unsatisfactory. Membrane material is an important factor that affects the separation performance. This review provides an overview on the advances in studying membrane materials for the pervaporation separation of aromatic/aliphatic mixtures over the past decade. Explored pristine polymers and their hybrid materials(as hybrid membranes) are summarized to highlight their nature and separation performance. We anticipate that this review could provide some guidance in the development of new materials for the aromatic/aliphatic pervaporation separation.
基金Project(50964010) supported by the National Natural Science Foundation of ChinaProject(090WCGA894) supported by the International S&T Cooperation Program of Gansu Province,China
文摘Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid processing of commercial AM60 alloy were present. The results indicate that the available processing temperature range of AM60 alloy is 170 ℃. The temperature sensitivity of solid fraction decreases with increasing solid fraction or with decreasing temperature above eutectic reaction temperature of AM60 alloy. When the solid fraction φs is 0.4, corresponding processing temperature is 603.8 ℃ and the sensitivity -dφs/dT is 0.0184. The effects of various alloying elements on the solidification behavior and SSM processability of AM60 alloy were calculated with Pandat software.
基金Supported by the Fund of Commission of Science Technology and Industry for National Defense (2001-949)and Province and University Cooperation Fund of Science and Technology Commission of Chongqing.
文摘An onsite testing based on eight-site air sampling was carried out in an airlaid papermaking workshop in Tianjin, China. By theoretical calculation, super absorbent polymer (SAP) size and its existent state in indoor static airflow were obtained. SAP content in the sampled air was tested through chemical analysis method and found to be 3.0-7.2 times that of the human health limit in production areas. The concentrations of total suspending particles (TSP) and respirable particles were achieved by weighing. Particles of the most concern differ for varied function areas. Particles smaller than 10μm are mostly produced in the main production process, and 73%-90% particles generated in packing areas are larger than 10μm. SAP raw material particles can easily changed to suspending form by inevitable extrusion and frication. Correlation between respirable particles and TSP agrees well with that in atmospheric environment.
基金Supported by the National High Technology Research and Development Program of China (2007AA03Z456)the National Natural Science Foundation of China (20776119, 21076169 and 31000019)+5 种基金the Xi’an Research and Development Program(NC08005, YF07078)the Scientific Research Program of Shaanxi Provincial Department of Education,China(08JK452,08JK453,JG08181,2010JC21,2010JS107,2010JS108, 2010JK876 and 2010JS109)Shaanxi Provincial Scientific Technology Research and Development Program (2007K06-03, 2010JQ2012, SJ08B03)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20096101120023, 20096101110014)NWU Graduate Innovation and Creativity Funds (08YSY17)Shaanxi Key Subject Program, China
文摘Freeze drying has a deleterious effect on the viability of microorganisms. In front of this difficulty, the present study adopts response surface methodology to optimize the chemical compositions of protective agents to seek for maximum viability of Bifidobacterium longum BIOMA 5920 during freeze-drying. Through the compara- tive analysis of single protectant, the complex protective agents show better effect on the Bifidobacterium viability. Human-like collagen (HLC), trehalose and glycerol are confirmed as significant factors by Box-Behnken Design. The optimized formula for these three variables is tested as follows: HLC 1.23%, trehalose 11.50% and glycerol 4.65%. Under this formula, the viability is 88.23%, 39.67% higher in comparison to the control. The viable count is 1.07×10 9 cfu·g-1 , greatly exceeding the minimum viable count requirement (10 6 cfu·g-1 ).
文摘This work, through an empirical research (Jayaram, Kannan and Tan model), aims at analysing, at the same time, the effect of "structural mechanisms" and "relationships building" factors on the value creation process in the Supply Chain. The two factors have been chosen among others, as they have been considered able to improve the internal and external processes of the firm and the Supply Chain, and in consequence, able to influence the value creation process of the Supply Chain Management. The research has been directed to the chemical and pharmaceutical sector of the Southern Lazio (Italy) and a factorial analysis, using the software SPSS (16.0) which has been performed in order to verify the influence of these factors in value creation process of the Supply Chain The outcomes confirm the positive contribute in the value creation process for companies that take care of the relationships among the stakeholders in the management process of the supply chain (the "relationships building" factor) and, in parallel with the analysis of the same process, the secondary role of the "structural mechanisms" factor has been highlighted.
文摘Bionics (the imitation or abstraction of the "inventions" of nature) and, to an even greater extent, syn- thetic biology, will be as relevant to engineering development and industry as the silicon chip was over the last 50 years. Chemical industries already use so-called "white biotechnology" for new processes, new raw materials, and more sustainable use of resources. Synthetic biology is also used for the devel- opment of second-generation biofuels and for harvesting the sun's energy with the help of tailor-made microorganisms or biometrically designed catalysts. The market potential for bionics in medicine, en- gineering processes, and DNA storage is huge. "Moonshot" projects are already aggressively focusing on diseases and new materials, and a US-led competition is currently underway with the aim of creating a thousand new molecules. This article describes a timeline that starts with current projects and then moves on to code engineering projects and their implications, artificial DNA, signaling molecules, and biological circuitry. Beyond these projects, one of the next frontiers in bionics is the design of synthetic metabolisms that include artificial food chains and foods, and the bioengineering of raw materials; all of which will lead to new insights into biological principles. Bioengineering will be an innovation motor just as digitalization is today. This article discusses pertinent examples of bioengineering, particularly the use of alternative carbon-based biofuels and the techniques and perils of cell modification. Big data, analytics, and massive storage are important factors in this next frontier. Although synthetic biology will be as pervasive and transformative in the next 50 years as digitization and the Intemet are today, its ap- plications and impacts are still in nascent stages. This article provides a general taxonomy in which the development of bioengineering is classified in five stages (DNA analysis, bio-circuits, minimal genomes, protocells, xenobiology) from the familiar to the unknown, with implications for safety and security, in- dustrial development, and the development of bioengineering and biotechnology as an interdisciplinary field. Ethical issues and the importance of a public debate about the consequences of bionics and syn- thetic biology are discussed.
文摘Medicinal plants provide an important source of cure since ancient time. Poor soil resources, scarce and saline water and the harsh environment limited the production of plants in the Arabian Gulf countries. This study aimed to investigate the production potential of rosemary (Rosmarinus officinalis L.) grown on different growth media under greenhouse conditions. Three growth media agricultural soil, compost and hydroponic system were used, whereas tuff (inert volcanic material) was used as substrate. The result indicated that the high salinity of the agricultural soil limited growth and oil yield in rosemary. Shoot height increased in 11 weeks, by 62%, 65% and 114% in plants grown in agricultural soil, hydroponic system and compost, respectively. Na content in plants grown in agricultural soil was significantly higher than in plants grown in the other treatment. Essential oil yield in plants grown in compost exceeded those in agricultural soil by 114%. Essential oil content (0.66%-1.5% w/w) and chemical constituents concentrations did not change significantly with growth media. The main constituents, more or less, are comparable to essential oils constituents reported from other countries. In comparison, better yields are obtained for individual components of the oils of plants grown under our green house conditions. This study demonstrated the great potential of commercial production of rosemary in the greenhouse without compromising the oil quality and oil yield.
文摘The industrial chemistry of oils and fats is a mature technology, with decades of experience and refinement behind current practices, therefore some physico-chemical characteristics of eleven vegetable oils sunflower oil (four different manufacturing companies), olive oil (three different manufacturing companies), corn oil, castor oil, coconut oil and canola oil in Iraqi Kurdistan region (Hawler city center) have been evaluated according to association of official analytical chemists (AOAC) (1995) official methods. The refractive index, viscosity, acid value, peroxide value, pH values, and values of specific gravity of the vegetable oil samples were measured at various different conditions. The results showed that some of the oil samples have unacceptable values in comparison with the standards.