[目的/意义]未来学习中心是教育部提出的一种面向未来的智慧学习空间建设思路。未来学习中心的建设已成为高校教育改革的重要方向和任务,它不仅是一种面向未来的全新教育模式,更是高校图书馆建设的新形态。[方法/过程]文章以中国海洋大...[目的/意义]未来学习中心是教育部提出的一种面向未来的智慧学习空间建设思路。未来学习中心的建设已成为高校教育改革的重要方向和任务,它不仅是一种面向未来的全新教育模式,更是高校图书馆建设的新形态。[方法/过程]文章以中国海洋大学学习综合体建设实践为例,阐述其建设背景、设计方案、特色服务及建设成效,[结果/结论]以期为高校图书馆学习中心建设提供借鉴与参考。[Purpose/Significance] The Future Learning Center is a future-oriented intelligent learning space construction idea put forward by the Ministry of Education. The construction of future learning center has become an important direction and task in the reform of university education, which is not only a new education model facing the future, but also a new form of university library construction. [Method/Process] Taking the construction practice of learning complex in Ocean University of China as an example, this paper expounds its construction background, design scheme, characteristic service and construction effect. [Result/Conclusion] In order to provide reference for the construction of university library learning center.展开更多
目前深度强化学习算法在不同应用领域中已经取得诸多成果,然而在多智能体任务领域中,往往面临大规模的具有稀疏奖励的非稳态环境,低探索效率问题仍是一大挑战。由于智能规划能够根据任务的初始状态和目标状态快速制定出决策方案,该方案...目前深度强化学习算法在不同应用领域中已经取得诸多成果,然而在多智能体任务领域中,往往面临大规模的具有稀疏奖励的非稳态环境,低探索效率问题仍是一大挑战。由于智能规划能够根据任务的初始状态和目标状态快速制定出决策方案,该方案能够作为各智能体的初始策略,并为其探索过程提供有效指导,因此尝试将智能规划与多智能体强化学习进行结合求解,并且提出统一模型UniMP(a Unified model for Multi-agent Reinforcement Learning and AI Planning)。在此基础上,设计并建立相应的问题求解机制。首先,将多智能体强化学习任务转化为智能决策任务;其次,对其执行启发式搜索,以得到一组宏观目标,进而指导强化学习的训练,使得各智能体能够进行更加高效的探索。在多智能体即时战略对抗场景StarCraftⅡ的各地图以及RMAICS战车模拟对战环境下进行实验,结果表明累计奖励值和胜率均有显著提升,从而验证了统一模型的可行性、求解机制的有效性以及所提算法灵活应对强化学习环境突发情况的能力。展开更多
现代战争的战场较大且兵种较多,利用多智能体强化学习(MARL)进行战场推演可以加强作战单位之间的协同决策能力,从而提升战斗力。当前MARL在兵棋推演研究和对抗演练中的应用普遍存在两个简化:各个智能体的同质化以及作战单位分布稠密。...现代战争的战场较大且兵种较多,利用多智能体强化学习(MARL)进行战场推演可以加强作战单位之间的协同决策能力,从而提升战斗力。当前MARL在兵棋推演研究和对抗演练中的应用普遍存在两个简化:各个智能体的同质化以及作战单位分布稠密。实际战争场景中并不总是满足这两个设定,可能包含多种异质的智能体以及作战单位分布稀疏。为了探索强化学习在更多场景中的应用,分别就这两方面进行改进研究。首先,设计并实现了多尺度多智能体抢滩登陆环境M2ALE,M2ALE针对上述两个简化设定做了针对性的复杂化,添加了多种异质智能体和作战单位分布稀疏的场景,这两种复杂化设定加剧了多智能体环境的探索困难问题和非平稳性,使用常用的多智能体算法通常难以训练。其次,提出了一种异质多智能体课程学习框架HMACL,用于应对M2ALE环境的难点。HMACL包括3个模块:1)任务生成模块(STG),用于生成源任务以引导智能体训练;2)种类策略提升模块(CPI),针对多智能体系统本身的非平稳性,提出了一种基于智能体种类的参数共享(Class Based Parameter Sharing)策略,实现了异质智能体系统中的参数共享;3)训练模块(Trainer),通过从STG获取源任务,从CPI获取最新的策略,使用任意MARL算法训练当前的最新策略。HMACL可以缓解常用MARL算法在M2ALE环境中的探索难问题和非平稳性问题,引导多智能体系统在M2ALE环境中的学习过程。实验结果表明,使用HMACL使得MARL算法在M2ALE环境下的采样效率和最终性能得到大幅度的提升。展开更多
在车联网中,合理分配频谱资源对满足不同车辆链路业务的服务质量(Quality of Service,QoS)需求具有重要意义。为解决车辆高速移动性和全局状态信息获取困难等问题,提出了一种基于完全分布式多智能体深度强化学习(Multi-Agent Deep Reinf...在车联网中,合理分配频谱资源对满足不同车辆链路业务的服务质量(Quality of Service,QoS)需求具有重要意义。为解决车辆高速移动性和全局状态信息获取困难等问题,提出了一种基于完全分布式多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)的资源分配算法。该算法在考虑车辆通信延迟和可靠性的情况下,通过优化频谱选择和功率分配策略来实现最大化网络吞吐量。引入共享经验池机制来解决多智能体并发学习导致的非平稳性问题。该算法基于深度Q网络(Deep Q Network,DQN),利用长短期记忆(Long Short Term Memory,LSTM)网络来捕捉和利用动态环境信息,以解决智能体的部分可观测性问题。将卷积神经网络(Convolutional Neural Network,CNN)和残差网络(Residual Network,ResNet)结合增强算法训练的准确性和预测能力。实验结果表明,所提出的算法能够满足车对基础设施(Vehicle-to-Infrastructure,V2I)链路的高吞吐量以及车对车(Vehicle-to-Vehicle,V2V)链路的低延迟要求,并且对环境变化表现出良好的适应性。展开更多
针对多智能体系统中智能体通信能力受限和多智能体强化学习中联合动作空间维数灾难问题,提出一种基于一致性的多智能体Q学习(multi-agent Q-learning based on consensus,MAQC)算法。该算法采用集中训练-分散执行框架。在集中训练阶段,M...针对多智能体系统中智能体通信能力受限和多智能体强化学习中联合动作空间维数灾难问题,提出一种基于一致性的多智能体Q学习(multi-agent Q-learning based on consensus,MAQC)算法。该算法采用集中训练-分散执行框架。在集中训练阶段,MAQC算法采用值分解方法缓解联合动作空间维数灾难问题。此外,每个智能体将自己感知到的局部状态和接收到的邻居的局部状态发送给所有邻居,最终使网络中的智能体获得所有智能体的全局状态。智能体所需的时间差分信息由一致性算法获得,智能体只需向邻居发送时间差分信息的分量信息。在执行阶段,每个智能体只需根据与自己动作有关的Q值函数来选择动作。结果表明,MAQC算法能够收敛到最优联合策略。展开更多
文摘[目的/意义]未来学习中心是教育部提出的一种面向未来的智慧学习空间建设思路。未来学习中心的建设已成为高校教育改革的重要方向和任务,它不仅是一种面向未来的全新教育模式,更是高校图书馆建设的新形态。[方法/过程]文章以中国海洋大学学习综合体建设实践为例,阐述其建设背景、设计方案、特色服务及建设成效,[结果/结论]以期为高校图书馆学习中心建设提供借鉴与参考。[Purpose/Significance] The Future Learning Center is a future-oriented intelligent learning space construction idea put forward by the Ministry of Education. The construction of future learning center has become an important direction and task in the reform of university education, which is not only a new education model facing the future, but also a new form of university library construction. [Method/Process] Taking the construction practice of learning complex in Ocean University of China as an example, this paper expounds its construction background, design scheme, characteristic service and construction effect. [Result/Conclusion] In order to provide reference for the construction of university library learning center.
文摘目前深度强化学习算法在不同应用领域中已经取得诸多成果,然而在多智能体任务领域中,往往面临大规模的具有稀疏奖励的非稳态环境,低探索效率问题仍是一大挑战。由于智能规划能够根据任务的初始状态和目标状态快速制定出决策方案,该方案能够作为各智能体的初始策略,并为其探索过程提供有效指导,因此尝试将智能规划与多智能体强化学习进行结合求解,并且提出统一模型UniMP(a Unified model for Multi-agent Reinforcement Learning and AI Planning)。在此基础上,设计并建立相应的问题求解机制。首先,将多智能体强化学习任务转化为智能决策任务;其次,对其执行启发式搜索,以得到一组宏观目标,进而指导强化学习的训练,使得各智能体能够进行更加高效的探索。在多智能体即时战略对抗场景StarCraftⅡ的各地图以及RMAICS战车模拟对战环境下进行实验,结果表明累计奖励值和胜率均有显著提升,从而验证了统一模型的可行性、求解机制的有效性以及所提算法灵活应对强化学习环境突发情况的能力。
文摘现代战争的战场较大且兵种较多,利用多智能体强化学习(MARL)进行战场推演可以加强作战单位之间的协同决策能力,从而提升战斗力。当前MARL在兵棋推演研究和对抗演练中的应用普遍存在两个简化:各个智能体的同质化以及作战单位分布稠密。实际战争场景中并不总是满足这两个设定,可能包含多种异质的智能体以及作战单位分布稀疏。为了探索强化学习在更多场景中的应用,分别就这两方面进行改进研究。首先,设计并实现了多尺度多智能体抢滩登陆环境M2ALE,M2ALE针对上述两个简化设定做了针对性的复杂化,添加了多种异质智能体和作战单位分布稀疏的场景,这两种复杂化设定加剧了多智能体环境的探索困难问题和非平稳性,使用常用的多智能体算法通常难以训练。其次,提出了一种异质多智能体课程学习框架HMACL,用于应对M2ALE环境的难点。HMACL包括3个模块:1)任务生成模块(STG),用于生成源任务以引导智能体训练;2)种类策略提升模块(CPI),针对多智能体系统本身的非平稳性,提出了一种基于智能体种类的参数共享(Class Based Parameter Sharing)策略,实现了异质智能体系统中的参数共享;3)训练模块(Trainer),通过从STG获取源任务,从CPI获取最新的策略,使用任意MARL算法训练当前的最新策略。HMACL可以缓解常用MARL算法在M2ALE环境中的探索难问题和非平稳性问题,引导多智能体系统在M2ALE环境中的学习过程。实验结果表明,使用HMACL使得MARL算法在M2ALE环境下的采样效率和最终性能得到大幅度的提升。
文摘在车联网中,合理分配频谱资源对满足不同车辆链路业务的服务质量(Quality of Service,QoS)需求具有重要意义。为解决车辆高速移动性和全局状态信息获取困难等问题,提出了一种基于完全分布式多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)的资源分配算法。该算法在考虑车辆通信延迟和可靠性的情况下,通过优化频谱选择和功率分配策略来实现最大化网络吞吐量。引入共享经验池机制来解决多智能体并发学习导致的非平稳性问题。该算法基于深度Q网络(Deep Q Network,DQN),利用长短期记忆(Long Short Term Memory,LSTM)网络来捕捉和利用动态环境信息,以解决智能体的部分可观测性问题。将卷积神经网络(Convolutional Neural Network,CNN)和残差网络(Residual Network,ResNet)结合增强算法训练的准确性和预测能力。实验结果表明,所提出的算法能够满足车对基础设施(Vehicle-to-Infrastructure,V2I)链路的高吞吐量以及车对车(Vehicle-to-Vehicle,V2V)链路的低延迟要求,并且对环境变化表现出良好的适应性。
文摘针对多智能体系统中智能体通信能力受限和多智能体强化学习中联合动作空间维数灾难问题,提出一种基于一致性的多智能体Q学习(multi-agent Q-learning based on consensus,MAQC)算法。该算法采用集中训练-分散执行框架。在集中训练阶段,MAQC算法采用值分解方法缓解联合动作空间维数灾难问题。此外,每个智能体将自己感知到的局部状态和接收到的邻居的局部状态发送给所有邻居,最终使网络中的智能体获得所有智能体的全局状态。智能体所需的时间差分信息由一致性算法获得,智能体只需向邻居发送时间差分信息的分量信息。在执行阶段,每个智能体只需根据与自己动作有关的Q值函数来选择动作。结果表明,MAQC算法能够收敛到最优联合策略。