以某西南电网变电站出现的4种故障的实测数据作为数据集,针对高压直流输电(high voltage direct-current,HVDC)系统的故障诊断设计出一种基于集成学习(ensemble learning, EM)的故障诊断方法,显著提升了故障诊断的速度、精度和鲁棒性。...以某西南电网变电站出现的4种故障的实测数据作为数据集,针对高压直流输电(high voltage direct-current,HVDC)系统的故障诊断设计出一种基于集成学习(ensemble learning, EM)的故障诊断方法,显著提升了故障诊断的速度、精度和鲁棒性。首先,对4类故障数据进行数据预处理,同时对故障数据的特征进行提取并完成训练,使用故障数据标签对故障数据集进行均分权重。然后,计算当前弱分类器对带权重数据集的分类误差,并计算当前分类器在强分类器中的权重。最后,更新训练样本权值的分布得到强分类器,根据训练好的模型对不同数据集下的故障类型进行辨识实验。通过与BP神经网络故障诊断模型对比,所提出的方法在多组测试中可以达到89%以上的诊断准确率,错误率较低并且鲁棒性强,有利于HVDC系统的故障识别和快速诊断。展开更多
针对传统的形态分割和模板匹配文字识别方法存在着识别精度低和不稳定的问题,为工业检测领域的芯片字符识别设计了一套基于深度学习的智能光学字符识别系统。该系统基于可微分二值化网络(detection with differentiable binarization ne...针对传统的形态分割和模板匹配文字识别方法存在着识别精度低和不稳定的问题,为工业检测领域的芯片字符识别设计了一套基于深度学习的智能光学字符识别系统。该系统基于可微分二值化网络(detection with differentiable binarization network,DBNet)、方向分类器和卷积网络,3个阶段分别训练深度模型实现文本区域的检测、文本方向分类和字符识别,最后进行串联推理完成微观芯片字符的自动化识别。同时针对显微场景下芯片字符图像易受光照干扰,采用数据增强与扩充、更换网络骨架、更改网络卷积步长,解决了复杂背景下微观芯片字符识别易误检的问题。工业生产线上的实际测试结果表明,该系统的识别准确率达到99.9%,误检率3.4?,速度0.56 s/张,极大地提升了字符识别正确率和效率,降低了误检率。最终的识别结果可以直接在云端远程实时查看,简化了传统工业字符识别流程,有助于工业智能化检测进一步发展和提高。展开更多
文摘以某西南电网变电站出现的4种故障的实测数据作为数据集,针对高压直流输电(high voltage direct-current,HVDC)系统的故障诊断设计出一种基于集成学习(ensemble learning, EM)的故障诊断方法,显著提升了故障诊断的速度、精度和鲁棒性。首先,对4类故障数据进行数据预处理,同时对故障数据的特征进行提取并完成训练,使用故障数据标签对故障数据集进行均分权重。然后,计算当前弱分类器对带权重数据集的分类误差,并计算当前分类器在强分类器中的权重。最后,更新训练样本权值的分布得到强分类器,根据训练好的模型对不同数据集下的故障类型进行辨识实验。通过与BP神经网络故障诊断模型对比,所提出的方法在多组测试中可以达到89%以上的诊断准确率,错误率较低并且鲁棒性强,有利于HVDC系统的故障识别和快速诊断。