针对步态识别在反恐、安防领域亟待解决的小样本问题,提出了一种基于深度卷积神经网络(convolutional and neural network,CNN)和DLTL(dual learning and transfer learning)的步态虚拟样本生成方法。首先用基于VGG19的深度卷积神经网...针对步态识别在反恐、安防领域亟待解决的小样本问题,提出了一种基于深度卷积神经网络(convolutional and neural network,CNN)和DLTL(dual learning and transfer learning)的步态虚拟样本生成方法。首先用基于VGG19的深度卷积神经网络模型低层响应提取步态风格特征图,然后利用基于对抗网络的对偶学习(dual learning,DL)对风格特征图进行风格训练,得到风格特征模型;其次利用VGG19模型的高层响应提取步态内容特征图,然后让步态内容特征图对风格特征模型中的风格特征进行学习;最后使用迁移学习(transfer learning,TL)获得步态虚拟偏移样本。实验结果表明,经过DLTL风格学习生成的步态虚拟样本虽然整体风格发生改变,但人体步态特征没有改变,可有效扩充小样本容量;当虚拟样本增加到一定数量时,步态识别率有所提升。该方法与现有步态虚拟样本生成方法进行对比实验,结果表明该算法优于现有方法,能够大量生成虚拟样本且稳定提高步态识别的识别率。展开更多
文摘针对步态识别在反恐、安防领域亟待解决的小样本问题,提出了一种基于深度卷积神经网络(convolutional and neural network,CNN)和DLTL(dual learning and transfer learning)的步态虚拟样本生成方法。首先用基于VGG19的深度卷积神经网络模型低层响应提取步态风格特征图,然后利用基于对抗网络的对偶学习(dual learning,DL)对风格特征图进行风格训练,得到风格特征模型;其次利用VGG19模型的高层响应提取步态内容特征图,然后让步态内容特征图对风格特征模型中的风格特征进行学习;最后使用迁移学习(transfer learning,TL)获得步态虚拟偏移样本。实验结果表明,经过DLTL风格学习生成的步态虚拟样本虽然整体风格发生改变,但人体步态特征没有改变,可有效扩充小样本容量;当虚拟样本增加到一定数量时,步态识别率有所提升。该方法与现有步态虚拟样本生成方法进行对比实验,结果表明该算法优于现有方法,能够大量生成虚拟样本且稳定提高步态识别的识别率。