期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
德国慕尼黑市阿尔诺夫帕克中心住区小学
1
作者 约翰内斯.塔尔霍夫 任翔 《新建筑》 2014年第1期112-117,共6页
德国慕尼黑市阿尔诺夫帕克中心住区小学方案源于幕尼黑市2007年举办的一次建筑设计竞赛。海斯-塔尔霍夫-库斯米尔兹建筑事务所和埃尔德曼基契赫尔景观建筑事务所的合作方案赢得竞赛第一名。该设计对小学的功能性、城市文脉,以及设计理... 德国慕尼黑市阿尔诺夫帕克中心住区小学方案源于幕尼黑市2007年举办的一次建筑设计竞赛。海斯-塔尔霍夫-库斯米尔兹建筑事务所和埃尔德曼基契赫尔景观建筑事务所的合作方案赢得竞赛第一名。该设计对小学的功能性、城市文脉,以及设计理念的经济有效性等一系列问题进行考虑,以有秩序的方法组织独立的学习空间,建立小学生们对学校的深刻认同感。 展开更多
关键词 城市文脉 学习屋 公共社区空间 材料与色彩
下载PDF
Intelligent Identification of Building Patches and Assessment of Roof Greening Suitability in High-density Urban Areas:A Case Study of Chengdu 被引量:1
2
作者 LUO Luhua CHEN Mingjie +8 位作者 DONG Lulu SU Wei LI Xin HU Xiaodong ZHANG Xin LI Chen CHENG Weiming SHI Hanning LUO Jiancheng 《Journal of Resources and Ecology》 CSCD 2022年第2期247-256,共10页
With the expansion of a city,the urban green space is occupied and the urban heat island effect is serious.Greening the roof surfaces of urban buildings is an effective way to increase the area of urban green space an... With the expansion of a city,the urban green space is occupied and the urban heat island effect is serious.Greening the roof surfaces of urban buildings is an effective way to increase the area of urban green space and improve the urban ecological environment.To provide effective data support for urban green space planning,this paper used high-resolution images to(1)obtain accurate building spots on the map of the study area through deep learning assisted manual correction;and(2)establish an evaluation index system of roof greening including the characteristics of the roof itself,the natural environment and the human society environment.The weight values of attributes not related to the roof itself were calculated by Analytic Hierarchy Process(AHP).The suitable green roof locations were evaluated by spatial join,weighted superposition and other spatial analysis methods.Taking the areas within the Chengdu city’s third ring road as the study area,the results show that an accurate building pattern obtained by deep learning greatly improves the efficiency of the experiment.The roof surfaces unsuitable for greening can be effectively classified by the method of feature extraction,with an accuracy of 86.58%.The roofs suitable for greening account for 48.08%,among which,the high-suitability roofs,medium-suitability roofs and low-suitability roofs represent 45.32%,38.95%and 15.73%.The high-suitability green buildings are mainly distributed in the first ring district and the western area outside the first ring district in Chengdu.This paper is useful for solving the current problem of the more saturated high-density urban area and allowing the expansion of the urban ecological environment. 展开更多
关键词 deep learning roof greening suitability assessment spatial join weighted overlay
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部