期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于特征优化的网络入侵检测模型设计 被引量:2
1
作者 郭海智 郭亮 王连胜 《现代电子技术》 北大核心 2019年第19期68-72,共5页
为了克服当前网络入侵检测模型存在的局限性,以获得更加理想的网络入侵检测结果,设计基于特征优化的网络入侵检测模型。首先研究当前网络入侵检测建模现状,分析特征对网络入侵检测结果的影响,然后建立网络入侵检测的特征优化数学模型,... 为了克服当前网络入侵检测模型存在的局限性,以获得更加理想的网络入侵检测结果,设计基于特征优化的网络入侵检测模型。首先研究当前网络入侵检测建模现状,分析特征对网络入侵检测结果的影响,然后建立网络入侵检测的特征优化数学模型,通过模拟自然界生物进化的自适应遗传算法对特征优化数学模型的解进行搜索,对最优解反编码得到入侵检测的最优特征子集,最后根据最优特征子集对网络入侵检测的学习样本进行建模,设计最优的网络入侵检测模型。采用网络入侵检测的标准数据集进行仿真对比测试,文中模型的网络入侵检测平均正确率大约为95%,而当前其他网络入侵检测模型均在95%以下,同时该模型的入侵检测建模训练和检测时间大幅度减少,能够获得更优的网络入侵检测效率。 展开更多
关键词 网络安全 入侵行为 网络入侵检测 学习样本建模 检测 特征分析
下载PDF
Novel Active Learning Method for Speech Recognition 被引量:1
2
作者 Liu Gang Chen Wei Guo Jun 《China Communications》 SCIE CSCD 2010年第5期29-39,共11页
In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learni... In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learning (AL) is adopted for speech recognition, where only the most informative training samples are selected for manual annotation. In this paper, we propose a novel active learning method for Chinese acoustic modeling, the methods for initial training set selection based on Kullback-Leibler Divergence (KLD) and sample evaluation based on multi-level confusion networks are proposed and adopted in our active learning system, respectively. Our experiments show that our proposed method can achieve satisfying performances. 展开更多
关键词 active learning acoustic model speech recognition KLD confusion network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部