Native language has been rejected for a long time in the foreign language class, which results from a misunderstanding to native language transfer by most teachers. Actually, it is an effective learning strategy to co...Native language has been rejected for a long time in the foreign language class, which results from a misunderstanding to native language transfer by most teachers. Actually, it is an effective learning strategy to complete the communication task under the help of native language, which should be acknowledged. Using native language to explain specific words or grammar rules can take advantage of the limited class-time efficiently and increase the class efficiency; using native language to discuss teaching method and solve the problems for the students can promote their enthusiasm. In these specific teaching processes, native language is an important teaching resource. Instances identify that native language has positive effects in the foreign language learning and teaching and it should have its own standpoint.展开更多
There is a positive transfer from native language vocabulary learning strategy to that of the second language. The comparison between them shows that the traditional Chinese character learning strategies have profound...There is a positive transfer from native language vocabulary learning strategy to that of the second language. The comparison between them shows that the traditional Chinese character learning strategies have profound effect on English vocabulary learning on the basis of morphology, lexicon as well as discourse categories. If the mutual effect can be applied in English vocabulary learning effectively, positive transfer emerges.展开更多
To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree,...To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree, the splitting rule of the decision tree is revised with a new definition of rank impurity. A new rank learning algorithm, which can be intuitively explained, is obtained and its theoretical basis is provided. The experimental results show that in the aspect of average rank loss, the ranking tree algorithm outperforms perception ranking and ordinal regression algorithms and it also has a faster convergence speed. The rank learning algorithm based on the decision tree is able to process categorical data and select relative features.展开更多
Aim To investigate the model free multi step average reward reinforcement learning algorithm. Methods By combining the R learning algorithms with the temporal difference learning (TD( λ ) learning) algorithm...Aim To investigate the model free multi step average reward reinforcement learning algorithm. Methods By combining the R learning algorithms with the temporal difference learning (TD( λ ) learning) algorithms for average reward problems, a novel incremental algorithm, called R( λ ) learning, was proposed. Results and Conclusion The proposed algorithm is a natural extension of the Q( λ) learning, the multi step discounted reward reinforcement learning algorithm, to the average reward cases. Simulation results show that the R( λ ) learning with intermediate λ values makes significant performance improvement over the simple R learning.展开更多
After a review of learning strategy research in China and abroad, this paper made an investigation on the differences in use of learning strategies reported by urban and rural students from four middle schools in Zhan...After a review of learning strategy research in China and abroad, this paper made an investigation on the differences in use of learning strategies reported by urban and rural students from four middle schools in Zhanjiang city. The investigation revealed the following findings: urban students employ cognitive and social strategies more frequently than rural students; urban students reported a wider range of strategies compared with their rural peers; urban students of intermediate achievements employ more social strategies than their rural peers, while rural students use affective strategy significantly more often; urban and rural students reported different patterns of gender difference.展开更多
As the ultimate goal of education, autonomy in language learning has aroused a lot of attention from scholars at home and abroad. While in universities of China, students do not have strong autonomy in English languag...As the ultimate goal of education, autonomy in language learning has aroused a lot of attention from scholars at home and abroad. While in universities of China, students do not have strong autonomy in English language learning. The author tries to adopt specific meta-cognitive strategies to facilitate students' autonomy in learning by improving learners' capacities in study planning or management, monitoring and evaluating in learning to raise their consciousness and ability in autonomy, and lay a foundation for life-long learning.展开更多
Through the research into college students' English autonomous learning ability of the non-English major students. That the cause why university students' English autonomous learning ability is weak is proved to be ...Through the research into college students' English autonomous learning ability of the non-English major students. That the cause why university students' English autonomous learning ability is weak is proved to be that they do not value the use of learning strategies. The use of learning strategies can promote the formation and enhancement of autonomous learning ability of the learners. Metacognitive strategy is a high-level management skill which can enable the learners to plan, regulate, monitor and evaluate actively their own learning process. Massive researches have proved whether metacognitive strategy is used successfully or not can directly affect the student learning result. So, it is necessary for teachers to cultivate and train the students to use metacogitive strategy in the university English teaching.展开更多
In contemporary English teaching, the study of English learning strategies has become one of the main concerns in teachers' teaching and research processes. The necessity of implementation of learning strategies trai...In contemporary English teaching, the study of English learning strategies has become one of the main concerns in teachers' teaching and research processes. The necessity of implementation of learning strategies training in the field of English teaching practice still remains disputable. This essay first introduces the different reactions towards the field; then advances the idea of combining English teaching strategies with English learning strategies attempting the implementation of learning strategies training in the classroom teaching. Finally, some thinking produced in the process of practicing the strategies training is raised to reexamine this teaching mode.展开更多
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual...During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.展开更多
文摘Native language has been rejected for a long time in the foreign language class, which results from a misunderstanding to native language transfer by most teachers. Actually, it is an effective learning strategy to complete the communication task under the help of native language, which should be acknowledged. Using native language to explain specific words or grammar rules can take advantage of the limited class-time efficiently and increase the class efficiency; using native language to discuss teaching method and solve the problems for the students can promote their enthusiasm. In these specific teaching processes, native language is an important teaching resource. Instances identify that native language has positive effects in the foreign language learning and teaching and it should have its own standpoint.
文摘There is a positive transfer from native language vocabulary learning strategy to that of the second language. The comparison between them shows that the traditional Chinese character learning strategies have profound effect on English vocabulary learning on the basis of morphology, lexicon as well as discourse categories. If the mutual effect can be applied in English vocabulary learning effectively, positive transfer emerges.
基金The Planning Program of Science and Technology of Hunan Province (No05JT1039)
文摘To overcome the limitation that complex data types with noun attributes cannot be processed by rank learning algorithms, a new rank learning algorithm is designed. In the learning algorithm based on the decision tree, the splitting rule of the decision tree is revised with a new definition of rank impurity. A new rank learning algorithm, which can be intuitively explained, is obtained and its theoretical basis is provided. The experimental results show that in the aspect of average rank loss, the ranking tree algorithm outperforms perception ranking and ordinal regression algorithms and it also has a faster convergence speed. The rank learning algorithm based on the decision tree is able to process categorical data and select relative features.
文摘Aim To investigate the model free multi step average reward reinforcement learning algorithm. Methods By combining the R learning algorithms with the temporal difference learning (TD( λ ) learning) algorithms for average reward problems, a novel incremental algorithm, called R( λ ) learning, was proposed. Results and Conclusion The proposed algorithm is a natural extension of the Q( λ) learning, the multi step discounted reward reinforcement learning algorithm, to the average reward cases. Simulation results show that the R( λ ) learning with intermediate λ values makes significant performance improvement over the simple R learning.
文摘After a review of learning strategy research in China and abroad, this paper made an investigation on the differences in use of learning strategies reported by urban and rural students from four middle schools in Zhanjiang city. The investigation revealed the following findings: urban students employ cognitive and social strategies more frequently than rural students; urban students reported a wider range of strategies compared with their rural peers; urban students of intermediate achievements employ more social strategies than their rural peers, while rural students use affective strategy significantly more often; urban and rural students reported different patterns of gender difference.
文摘As the ultimate goal of education, autonomy in language learning has aroused a lot of attention from scholars at home and abroad. While in universities of China, students do not have strong autonomy in English language learning. The author tries to adopt specific meta-cognitive strategies to facilitate students' autonomy in learning by improving learners' capacities in study planning or management, monitoring and evaluating in learning to raise their consciousness and ability in autonomy, and lay a foundation for life-long learning.
文摘Through the research into college students' English autonomous learning ability of the non-English major students. That the cause why university students' English autonomous learning ability is weak is proved to be that they do not value the use of learning strategies. The use of learning strategies can promote the formation and enhancement of autonomous learning ability of the learners. Metacognitive strategy is a high-level management skill which can enable the learners to plan, regulate, monitor and evaluate actively their own learning process. Massive researches have proved whether metacognitive strategy is used successfully or not can directly affect the student learning result. So, it is necessary for teachers to cultivate and train the students to use metacogitive strategy in the university English teaching.
文摘In contemporary English teaching, the study of English learning strategies has become one of the main concerns in teachers' teaching and research processes. The necessity of implementation of learning strategies training in the field of English teaching practice still remains disputable. This essay first introduces the different reactions towards the field; then advances the idea of combining English teaching strategies with English learning strategies attempting the implementation of learning strategies training in the classroom teaching. Finally, some thinking produced in the process of practicing the strategies training is raised to reexamine this teaching mode.
基金Projects(50275150,61173052)supported by the National Natural Science Foundation of China
文摘During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.