期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Agent的Web学习环境模型
1
作者 章晓英 黄河笑 《开放教育研究》 CSSCI 2004年第4期57-59,共3页
现在学生获得学习的方式除传统的方式以外,就是越来越普遍的不受时间和空间限制的网上教 学。但现在网上教学由于受各种条件的限制还不能达到通过传统教学获得的学习效果。因此,该文提出一种基 于Agent的Web学习环境模型,该模型是建立... 现在学生获得学习的方式除传统的方式以外,就是越来越普遍的不受时间和空间限制的网上教 学。但现在网上教学由于受各种条件的限制还不能达到通过传统教学获得的学习效果。因此,该文提出一种基 于Agent的Web学习环境模型,该模型是建立在利用Agent自身特性的基础上,其目的就是为了改善学习效果。 展开更多
关键词 网上教学 AGENT 学习环境模型 信息交换 学习纪录
下载PDF
Extreme fire weather is the major driver of severe bushfires in southeast Australia 被引量:2
2
作者 Bin Wang Allan C.Spessa +14 位作者 Puyu Feng Xin Hou Chao Yue Jing-Jia Luo Philippe Ciais Cathy Waters Annette Cowie Rachael H.Nolan Tadas Nikonovas Huidong Jin Henry Walshaw Jinghua Wei Xiaowei Guo De Li Liu Qiang Yu 《Science Bulletin》 SCIE EI CSCD 2022年第6期655-664,M0004,共11页
In Australia,the proportion of forest area that burns in a typical fire season is less than for other vegetation types.However,the 2019-2020 austral spring-summer was an exception,with over four times the previous max... In Australia,the proportion of forest area that burns in a typical fire season is less than for other vegetation types.However,the 2019-2020 austral spring-summer was an exception,with over four times the previous maximum area burnt in southeast Australian temperate forests.Temperate forest fires have extensive socio-economic,human health,greenhouse gas emissions,and biodiversity impacts due to high fire intensities.A robust model that identifies driving factors of forest fires and relates impact thresholds to fire activity at regional scales would help land managers and fire-fighting agencies prepare for potentially hazardous fire in Australia.Here,we developed a machine-learning diagnostic model to quantify nonlinear relationships between monthly burnt area and biophysical factors in southeast Australian forests for 2001-2020 on a 0.25°grid based on several biophysical parameters,notably fire weather and vegetation productivity.Our model explained over 80%of the variation in the burnt area.We identified that burnt area dynamics in southeast Australian forest were primarily controlled by extreme fire weather,which mainly linked to fluctuations in the Southern Annular Mode(SAM)and Indian Ocean Dipole(IOD),with a relatively smaller contribution from the central Pacific El Niño Southern Oscillation(ENSO).Our fire diagnostic model and the non-linear relationships between burnt area and environmental covariates can provide useful guidance to decision-makers who manage preparations for an upcoming fire season,and model developers working on improved early warning systems for forest fires. 展开更多
关键词 Remote sensing Forest fires Climate drivers Burnt area modelling Machine learning Southeast Australia
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部