现有知识追踪模型大多以概念为中心评估学生的未来表现,忽略了包含相同概念的练习之间的差异,从而影响模型的预测准确性。此外,在构建学生知识状态过程中,现有模型未能充分利用学生在答题过程中的学习遗忘特征,导致对学生知识状态的刻...现有知识追踪模型大多以概念为中心评估学生的未来表现,忽略了包含相同概念的练习之间的差异,从而影响模型的预测准确性。此外,在构建学生知识状态过程中,现有模型未能充分利用学生在答题过程中的学习遗忘特征,导致对学生知识状态的刻画不够精确。针对以上问题,提出了一种练习嵌入和学习遗忘特征增强的知识追踪模型(exercise embeddings and learning-forgetting features boosted knowledge tracing, ELFBKT)。该模型利用练习概念二部图中的显性关系,深入计算二部图中的隐性关系,构建了一个练习概念异构关系图。为充分利用异构图中的丰富关系信息,ELFBKT模型引入了关系图卷积网络。通过该网络的处理,模型能够增强练习嵌入的质量,并以练习为中心更准确地预测学生的未来表现。此外,ELFBKT充分利用多种学习遗忘特征,构建了两个门控机制,分别针对学生的学习行为和遗忘行为进行建模,更精确地刻画学生的知识状态。在两个真实世界数据集上进行实验,结果表明ELFBKT在知识追踪任务上的性能优于其他模型。展开更多
反后门学习方法(anti-backdoor learning,ABL)在利用中毒数据集进行模型训练过程中能实时检测并抑制后门生成,最终得到良性模型。但反后门学习方法存在后门样本和良性样本无法有效隔离、后门消除效率不高的问题。为此,提出遗忘学习前置...反后门学习方法(anti-backdoor learning,ABL)在利用中毒数据集进行模型训练过程中能实时检测并抑制后门生成,最终得到良性模型。但反后门学习方法存在后门样本和良性样本无法有效隔离、后门消除效率不高的问题。为此,提出遗忘学习前置的反后门学习方法(anti-backdoor learning method based on preposed unlearning,ABLPU),在隔离阶段对训练样本增加提纯操作,达到有效隔离良性样本的目标,在消除阶段采用后门遗忘-模型再训练的范式,并引入遗忘系数,实现后门的高效消除。在CIFAR-10数据集上针对后门攻击方法BadNets,遗忘学习前置的反后门学习方法较反后门学习方法(基线方法)良性准确率提高1.21个百分点,攻击成功率下降1.38个百分点。展开更多
文摘现有知识追踪模型大多以概念为中心评估学生的未来表现,忽略了包含相同概念的练习之间的差异,从而影响模型的预测准确性。此外,在构建学生知识状态过程中,现有模型未能充分利用学生在答题过程中的学习遗忘特征,导致对学生知识状态的刻画不够精确。针对以上问题,提出了一种练习嵌入和学习遗忘特征增强的知识追踪模型(exercise embeddings and learning-forgetting features boosted knowledge tracing, ELFBKT)。该模型利用练习概念二部图中的显性关系,深入计算二部图中的隐性关系,构建了一个练习概念异构关系图。为充分利用异构图中的丰富关系信息,ELFBKT模型引入了关系图卷积网络。通过该网络的处理,模型能够增强练习嵌入的质量,并以练习为中心更准确地预测学生的未来表现。此外,ELFBKT充分利用多种学习遗忘特征,构建了两个门控机制,分别针对学生的学习行为和遗忘行为进行建模,更精确地刻画学生的知识状态。在两个真实世界数据集上进行实验,结果表明ELFBKT在知识追踪任务上的性能优于其他模型。
文摘反后门学习方法(anti-backdoor learning,ABL)在利用中毒数据集进行模型训练过程中能实时检测并抑制后门生成,最终得到良性模型。但反后门学习方法存在后门样本和良性样本无法有效隔离、后门消除效率不高的问题。为此,提出遗忘学习前置的反后门学习方法(anti-backdoor learning method based on preposed unlearning,ABLPU),在隔离阶段对训练样本增加提纯操作,达到有效隔离良性样本的目标,在消除阶段采用后门遗忘-模型再训练的范式,并引入遗忘系数,实现后门的高效消除。在CIFAR-10数据集上针对后门攻击方法BadNets,遗忘学习前置的反后门学习方法较反后门学习方法(基线方法)良性准确率提高1.21个百分点,攻击成功率下降1.38个百分点。