An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ...An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.展开更多
文摘为提高车辆控制算法对不同道路的适应能力,在原有学习预测控制算法的基础上,本文提出一种基于经验迁移的赛车学习预测控制策略.基于所建立的赛车曲线坐标系模型,记录小车在历史赛道上的行驶轨迹,将其作为采样安全集.采样安全集蕴含了车辆行驶的经验信息.在新赛道上,通过与采样安全集内曲率相近的轨迹进行特征匹配,找出新赛道的虚拟路径跟踪轨迹.然后,对虚拟路径跟踪轨迹附近的采样点进行坐标变换,将历史轨迹转换为新赛道的虚拟采样轨迹,实现对历史赛道上的行驶经验的迁移.构造了迁移学习预测控制(TLMPC),使小车在新的赛道上能够通过学习预测控制器以更快的速度行驶.本文在4个典型赛道上进行了仿真,结果表明所设计的控制策略控制效果有明显提升.与LMPC相比,10次迭代结果中单圈耗时至少减少了1.2 s.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062) and the National High Technology Research and Development Program of China (2007AA04Z162).
文摘An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.