期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
跟踪-学习-检测框架下改进加速梯度的目标跟踪 被引量:2
1
作者 杨欣 夏斯军 +2 位作者 刘冬雪 费树岷 胡银记 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第2期533-538,共6页
单目标持久跟踪的主要难点是由于目标姿态、相似背景及遮挡等因素而导致的漂移问题。基于此提出了一种改进L1APG(L1tracker using accelerated proximal gradient approach)的目标-学习-检测(TLD)目标跟踪算法。首先,在L1APG跟踪器中加... 单目标持久跟踪的主要难点是由于目标姿态、相似背景及遮挡等因素而导致的漂移问题。基于此提出了一种改进L1APG(L1tracker using accelerated proximal gradient approach)的目标-学习-检测(TLD)目标跟踪算法。首先,在L1APG跟踪器中加入遮挡检测判断;其次,将遮挡程度转换为目标模板和背景模板系数的权重;最后,用改进的L1APG跟踪器取代传统TLD框架中的跟踪器,自适应地根据遮挡程度改变模板系数,从而有效地提高了跟踪效果。实验表明:本文算法与传统TLD跟踪框架相比,能更好地处理遮挡和漂移问题,具有较好的稳定性和鲁棒性。 展开更多
关键词 人工智能 目标跟踪 目标-学习-检测 遮挡 漂移
下载PDF
基于时间上下文跟踪-学习-检测的指尖跟踪方法 被引量:1
2
作者 侯荣波 康文雄 +2 位作者 房育勋 黄荣恩 徐伟钊 《计算机应用》 CSCD 北大核心 2016年第5期1371-1377,共7页
针对在基于视频的空中签名认证系统中,现有方法无法满足指尖跟踪的准确性、实时性和鲁棒性要求的问题,在对比研究目前常用的多种跟踪方法的基础上,提出一种基于时间上下文的跟踪-学习-检测(TLD)方法。在原始TLD算法的基础上引入时间上... 针对在基于视频的空中签名认证系统中,现有方法无法满足指尖跟踪的准确性、实时性和鲁棒性要求的问题,在对比研究目前常用的多种跟踪方法的基础上,提出一种基于时间上下文的跟踪-学习-检测(TLD)方法。在原始TLD算法的基础上引入时间上下文信息,即相邻两帧间指尖运动具有连续性的先验知识,自适应地缩小检测和跟踪的搜索范围,以提高跟踪的速度。对12组公开的1组自录的视频序列的实验结果表明,改进后的TLD算法能够准确地跟踪指尖,并且跟踪速度达到43帧/秒;与原始TLD跟踪算法相比,准确率提高了15%,跟踪速度至少提高1倍,达到了指尖跟踪的准确性、实时性和鲁棒性要求。 展开更多
关键词 目标跟踪 指尖跟踪 跟踪-学习-检测算法 时间上下文 人机交互
下载PDF
用基于二值化规范梯度的跟踪学习检测算法高效跟踪目标 被引量:3
3
作者 程帅 曹永刚 +2 位作者 孙俊喜 刘广文 韩广良 《光学精密工程》 EI CAS CSCD 北大核心 2015年第8期2339-2348,共10页
为提高复杂环境下TLD(Tracking-Learning-Detection)算法的跟踪精度和速度,提出基于二值化规范梯度(BING)的高效TLD目标跟踪算法。在跟踪器中引入基于时空上下文的局部跟踪器失败预测方法和全局运动模型评估算法,提高了跟踪器准确度和... 为提高复杂环境下TLD(Tracking-Learning-Detection)算法的跟踪精度和速度,提出基于二值化规范梯度(BING)的高效TLD目标跟踪算法。在跟踪器中引入基于时空上下文的局部跟踪器失败预测方法和全局运动模型评估算法,提高了跟踪器准确度和鲁棒性;用BING算法取代滑动窗口搜索策略,结合级联分类器实现目标检测,减少了检测器的检测范围,提高了检测的处理速度;将训练样本权重整合到在线学习过程中,改进级联分类器的分类准确度,解决了目标漂移问题。对不同的图片序列实验结果表明:本算法的跟踪正确率达85%,帧率达19.79frame/s。与原始TLD算法及其他主流跟踪算法相比较,该算法在复杂环境下具有更高的鲁棒性、跟踪精度及处理速度。 展开更多
关键词 目标跟踪 跟踪-学习-检测 二值化规范梯度 加权
下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision
4
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
基于增强群跟踪器和深度学习的目标跟踪 被引量:2
5
作者 程帅 曹永刚 +3 位作者 孙俊喜 赵立荣 刘广文 韩广良 《电子与信息学报》 EI CSCD 北大核心 2015年第7期1646-1653,共8页
为解决基于外观模型和传统机器学习目标跟踪易出现目标漂移甚至跟踪失败的问题,该文提出以跟踪-学习-检测(TLD)算法为框架,基于增强群跟踪器(Fo T)和深度学习的目标跟踪算法。Fo T实现目标的预测与跟踪,增添基于时空上下文级联预测器提... 为解决基于外观模型和传统机器学习目标跟踪易出现目标漂移甚至跟踪失败的问题,该文提出以跟踪-学习-检测(TLD)算法为框架,基于增强群跟踪器(Fo T)和深度学习的目标跟踪算法。Fo T实现目标的预测与跟踪,增添基于时空上下文级联预测器提高预测局部跟踪器的成功率,快速随机采样一致性算法评估全局运动模型,提高目标跟踪的精确度。深度去噪自编码器和支持向量机分类器构建深度检测器,结合全局多尺度扫描窗口搜索策略检测可能的目标。加权P-N学习对样本加权处理,提高分类器的分类精确度。与其它跟踪算法相比较,在复杂环境下,不同图片序列实验结果表明,该算法在遮挡、相似背景等条件下具有更高的准确度和鲁棒性。 展开更多
关键词 计算机视觉 群跟踪器 跟踪-学习-检测 深度学习 支持向量机 深度检测
下载PDF
基于在线学习的雷达目标跟踪技术研究 被引量:3
6
作者 耿利祥 尹晓燕 +1 位作者 蔡文彬 李伟 《雷达与对抗》 2018年第3期28-30,68,共4页
传统的单纯依赖跟踪算法的雷达目标跟踪在目标长时间跟踪任务中容易受到杂波和目标本身属性波动的影响,导致跟踪失败。提出一种基于在线学习机制的长时间雷达目标跟踪方法——基于多模型优化的在线学习雷达目标跟踪算法。在跟踪-学习-... 传统的单纯依赖跟踪算法的雷达目标跟踪在目标长时间跟踪任务中容易受到杂波和目标本身属性波动的影响,导致跟踪失败。提出一种基于在线学习机制的长时间雷达目标跟踪方法——基于多模型优化的在线学习雷达目标跟踪算法。在跟踪-学习-检测架构上,采用多模型跟踪结果作为训练检测器的部分样本,由学习器约束跟踪器和检测器,并优化跟踪器,以达到长时间稳定跟踪的目的。仿真实验表明,本文算法能够有效降低长时间跟踪过程中跟踪失败现象,具有一定的工程研究价值。 展开更多
关键词 雷达目标跟踪 目标检测 在线学习 多模型 跟踪-学习-检测
下载PDF
在线学习机制下的Snake轮廓跟踪 被引量:4
7
作者 沈宋衍 陈莹 《计算机工程》 CAS CSCD 北大核心 2015年第4期195-198,共4页
针对复杂环境下非刚体目标轮廓跟踪存在跟踪失败的问题,提出一种基于在线学习的Snake模型及其轮廓跟踪算法。利用跟踪-学习-检测(TLD)机制实现目标快速跟踪,通过跟踪结果在线更新Snake模型约束,进而提高目标轮廓跟踪的准确性。初始化阶... 针对复杂环境下非刚体目标轮廓跟踪存在跟踪失败的问题,提出一种基于在线学习的Snake模型及其轮廓跟踪算法。利用跟踪-学习-检测(TLD)机制实现目标快速跟踪,通过跟踪结果在线更新Snake模型约束,进而提高目标轮廓跟踪的准确性。初始化阶段,在Grab Cut算法的基础上,将待跟踪目标分成若干个子块,并在后续跟踪过程中,利用TLD实现各子目标的定位跟踪,形成目标的轮廓置信图。同时针对各子目标提取特征,产生正负样本,更新各子目标跟踪模型。应用置信图建立参数化Snake模型的约束条件,进而得到目标轮廓。实验结果表明,该算法能适应光暗变化与较为复杂坏境下的跟踪,并获得精确的轮廓。 展开更多
关键词 轮廓跟踪 GrabCut算法 SNAKE模型 跟踪-学习-检测算法 在线学习 置信图
下载PDF
Anomaly detection of earthquake precursor data using long short-term memory networks 被引量:7
8
作者 Cai Yin Mei-Ling Shyu +2 位作者 Tu Yue-Xuan Teng Yun-Tian Hu Xing-Xing 《Applied Geophysics》 SCIE CSCD 2019年第3期257-266,394,共11页
Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predic... Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predictive model for normal data.Furthermore,the prediction errors from the predictive models are used to indicate normal or abnormal behavior.An additional advantage of using the LSTM networks is that the earthquake precursor data can be directly fed into the network without any elaborate preprocessing as required by other approaches.Furthermore,no prior information on abnormal data is needed by these networks as they are trained only using normal data.Experiments using three groups of real data were conducted to compare the anomaly detection results of the proposed method with those of manual recognition.The comparison results indicated that the proposed LSTM network achieves promising results and is viable for detecting anomalies in earthquake precursor data. 展开更多
关键词 Earthquake precursor data deep learning LSTM-RNN prediction model anomaly detect io n
下载PDF
A learning-based method to detect and segment text from scene images 被引量:3
9
作者 JIANG Ren-jie QI Fei-hu +2 位作者 XU Li WU Guo-rong ZHU Kai-hua 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期568-574,共7页
This paper proposes a learning-based method for text detection and text segmentation in natural scene images. First, the input image is decomposed into multiple connected-components (CCs) by Niblack clustering algorit... This paper proposes a learning-based method for text detection and text segmentation in natural scene images. First, the input image is decomposed into multiple connected-components (CCs) by Niblack clustering algorithm. Then all the CCs including text CCs and non-text CCs are verified on their text features by a 2-stage classification module, where most non-text CCs are discarded by an attentional cascade classifier and remaining CCs are further verified by an SVM. All the accepted CCs are output to result in text only binary image. Experiments with many images in different scenes showed satisfactory performance of our proposed method. 展开更多
关键词 Text detection Text segmentation Text feature Attentional cascade
下载PDF
ADS-B Anomaly Data Detection Model Based on Deep Learning and Difference of Gaussian Approach 被引量:6
10
作者 WANG Ershen SONG Yuanshang +5 位作者 XU Song GUO Jing HONG Chen QU Pingping PANG Tao ZHANG Jiantong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期550-561,共12页
Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for position... Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models. 展开更多
关键词 general aviation aircraft automatic dependent surveillance-broadcast(ADS-B) anomaly data detection deep learning difference of Gaussian(DoG) long short-term memory(LSTM)
下载PDF
Object detection of artifact threaded hole based on Faster R-CNN 被引量:2
11
作者 ZHANG Zhengkai QI Lang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期107-114,共8页
In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based ... In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy. 展开更多
关键词 object detection threaded hole deep learning region-based convolutional neural network(Faster R-CNN) Hough transform
下载PDF
Learning Retention in Undergraduate Biology Using a Hands-on Practical "Enzyme Detection from Vegetables and Fruits"
12
作者 Surasak Laloknam Supapom Sirisopana Somkiat Phornphisutthimas 《Journal of Chemistry and Chemical Engineering》 2010年第5期29-35,共7页
The purpose of this research was to study learning retention in undergraduate biology students on the topic of enzyme properties by using simple enzyme activity from vegetables and fruits. A hands-on practical was dev... The purpose of this research was to study learning retention in undergraduate biology students on the topic of enzyme properties by using simple enzyme activity from vegetables and fruits. A hands-on practical was developed to simplify detection of enzyme activity of amylase, protease and lipase on starch agar, dry whole milk agar, and trihutyrin agar, respectively. The subjects of the study were 24 senior undergraduates who studied in the Program of General Science, Faculty of Science, Srinakharinwirot University, Bangkok, in three semesters during 2007 - 2008. The basic concepts of enzymes, e.g., substrate specificity, how to detect enzymes and optimal enzyme conditions, were taught before the practical. The first enzyme, protease, was used in the second semester of 2007, and then changed to be lipase and protease in the first and second semesters of 2008, respectively. Ten open-ended questions were used to assess students in all semesters. In agreement with the constructivist learning model, it was demonstrated that students had learning retention and applied their prior knowledge to other enzyme experiments. 展开更多
关键词 Learning retention enzyme detection CONSTRUCTIVISM undergraduate classroom.
下载PDF
Automatic Mid-Level Concepts Clusteringfor Violent Movie Scenes Detection
13
作者 Terumasa AOKI Shinichi GOTO 《Journal of Mathematics and System Science》 2014年第9期609-619,共11页
This paper presents a novel system for violent scenes detection, which is based on machine learning to handle visual and audio features. MKL (Multiple Kernel Learning) is applied so that multimodality of videos can ... This paper presents a novel system for violent scenes detection, which is based on machine learning to handle visual and audio features. MKL (Multiple Kernel Learning) is applied so that multimodality of videos can be maximized. The largest features of our system is that mid-level concepts clustering is proposed and implemented in order to learn mid-level concepts implicitly. By this algorithm, our system does not need manually tagged annotations. The whole system is trained on the dataset from MediaEval 2013 Affect Task and evaluated by its official metric. The obtained results outperformed its best score. 展开更多
关键词 Multimedia analysis video processing violence scenes detection MediaEval machine learning MKL(Multiple KernelLearning)
下载PDF
TLD框架下的内河船舶跟踪 被引量:7
14
作者 滕飞 刘清 +1 位作者 郭建明 周雅琪 《应用科学学报》 CAS CSCD 北大核心 2014年第1期105-110,共6页
闭路电视(closed circuit television,CCTV)系统是内河海事监管的重要手段.基于跟踪-学习-检测(tracking-learning-detection,TLD)框架研究并改进内河航道CCTV系统的船舶识别和跟踪.在TLD框架下提出特征值约束条件,可对像素的短期跟踪... 闭路电视(closed circuit television,CCTV)系统是内河海事监管的重要手段.基于跟踪-学习-检测(tracking-learning-detection,TLD)框架研究并改进内河航道CCTV系统的船舶识别和跟踪.在TLD框架下提出特征值约束条件,可对像素的短期跟踪结果进行校验,不仅有效解决了像素对归一化相关系数值求解的繁琐问题,还很好地保留了图像中角点像素的跟踪结果,使船舶的短期跟踪足够可靠.用级联的目标检测器精确定位船舶时,在满足内河应用实时性前提下,提出通过对目标候选区域的模板匹配来保证算法准确性.实验结果表明,改进的算法在应用于内河CCTV系统的船舶识别与跟踪中保持了较高的实时性和鲁棒性,并提高了跟踪精度. 展开更多
关键词 内河 闭路电视系统 跟踪-学习-检测 船舶跟踪
下载PDF
采用帧差法和相关滤波改进的TLD跟踪算法 被引量:5
15
作者 苏佳 高丽慧 《计算机工程与设计》 北大核心 2020年第6期1694-1700,共7页
针对TLD(tracking-learning-detection)算法实时性和鲁棒性差的问题,提出一种改进的FD-CFTLD(foreground detection-correlation filter TLD)目标跟踪算法。以TLD算法为基本框架,在检测模块采用帧差法进行前景检测,减小检测区域,提高检... 针对TLD(tracking-learning-detection)算法实时性和鲁棒性差的问题,提出一种改进的FD-CFTLD(foreground detection-correlation filter TLD)目标跟踪算法。以TLD算法为基本框架,在检测模块采用帧差法进行前景检测,减小检测区域,提高检测速度;在跟踪模块采用核相关滤波(kernelized correlation filter,KCF)算法,并采用新的更新策略,使用检测模块修正后的跟踪结果更新跟踪器中的滤波器模型,提高跟踪的鲁棒性和精确度。实验结果表明,FD-CFTLD算法的成功率和精确度优于TLD算法,在应对光照变化、尺度变化和遮挡等场景时表现出良好的鲁棒性和实时性。 展开更多
关键词 计算机视觉 目标跟踪 跟踪-学习-检测 核相关滤波器 帧差法
下载PDF
基于改进TLD算法的激光视觉传感型焊缝跟踪 被引量:4
16
作者 杜健准 高向东 +3 位作者 黎扬进 肖小亭 孙友松 卢新钊 《激光技术》 CAS CSCD 北大核心 2021年第3期292-297,共6页
为了解决基于线激光视觉传感的焊缝中心位置定位精度不高的问题,采用了一种基于改进跟踪-学习-检测(TLD)算法的焊缝跟踪方法。由激光视觉传感器实时获取焊缝图像,采用将跟踪器与检测器结合的TLD算法实时跟踪焊缝特征点,同时通过在线学... 为了解决基于线激光视觉传感的焊缝中心位置定位精度不高的问题,采用了一种基于改进跟踪-学习-检测(TLD)算法的焊缝跟踪方法。由激光视觉传感器实时获取焊缝图像,采用将跟踪器与检测器结合的TLD算法实时跟踪焊缝特征点,同时通过在线学习机制更新分类器参量。在此基础上对激光条纹图像截取感兴趣区域,大幅减少检测器的搜索区域;根据激光条纹光强分布特性,结合纠偏方向选取跟踪器有效特征点,以此提高算法效率,对不锈钢板V型焊缝和搭接焊缝进行跟踪试验。结果表明,跟踪与检测可实现共同定位焊缝中心位置,其融合的焊缝跟踪方法能够准确地提取焊缝特征点,两种焊缝跟踪平均绝对误差分别为0.062mm和0.052mm。此方法为提高焊缝跟踪精度提供了依据。 展开更多
关键词 图像处理 焊缝跟踪 跟踪-学习-检测算法 激光视觉
下载PDF
低空目标的雷达/可见光协同监视跟踪方法研究 被引量:5
17
作者 张雅雯 胡士强 《计算机工程与应用》 CSCD 北大核心 2018年第6期234-240,共7页
近年来,随着通用航空和旋翼无人机的飞速发展,对相关空域的安全性监视与管理提出了迫切要求。由于雷达在低空空域存在探测盲区,极易受到杂波干扰,无法准确获取目标信息,而ADS-B系统大规模布设存在局限性,低空空域的有效监视与管理成为... 近年来,随着通用航空和旋翼无人机的飞速发展,对相关空域的安全性监视与管理提出了迫切要求。由于雷达在低空空域存在探测盲区,极易受到杂波干扰,无法准确获取目标信息,而ADS-B系统大规模布设存在局限性,低空空域的有效监视与管理成为研究的热点。研究了一种低空目标的雷达/可见光协同监视跟踪方法,该方法基于跟踪-学习-检测(TLD)架构,将雷达作为主跟踪器,可见光传感器作为检测器,通过交互多模型算法和学习器实现量测模型切换和数据在线更新,从而获取更准确的目标状态信息,实现低空空域更精确的监视和目标跟踪,数据仿真说明了该方法的有效性。 展开更多
关键词 空域监视 雷达 可见光传感器 跟踪-学习-检测 协同跟踪
下载PDF
基于LBP的TLD目标跟踪改进算法 被引量:5
18
作者 杨娇 陈强 +1 位作者 周玲 孙海静 《传感器与微系统》 CSCD 2019年第11期136-138,143,共4页
针对跟踪—学习—检测(TLD)对光照变化敏感、易受目标遮挡、快速运动导致目标模糊这些因素的影响,提出了基于局部二值模式(LBP)的TLD目标跟踪改进算法。首先,将LBP算法与最近邻分类器相结合,使得改进后的最近邻分类器可以获取与跟踪目... 针对跟踪—学习—检测(TLD)对光照变化敏感、易受目标遮挡、快速运动导致目标模糊这些因素的影响,提出了基于局部二值模式(LBP)的TLD目标跟踪改进算法。首先,将LBP算法与最近邻分类器相结合,使得改进后的最近邻分类器可以获取与跟踪目标更接近的边界框,且当目标具有良好的纹理属性时,改进后的最近邻分类器具有更好的分类效果;其次,若TLD算法选取的跟踪目标在跟踪过程中受到遮挡,或者晃动,则使用Kalman滤波器预测目标所在区域,可以缩小跟踪器的检测范围,增强算法的效率。实验结果表明:改进后的跟踪算法与常规TLD相比,鲁棒性更好,精度更高,跟踪速度更快。 展开更多
关键词 跟踪-学习-检测(TLD) 跟踪算法 局部二值模式(LBP) 卡尔曼滤波器
下载PDF
Contrast Detection Learning Improves Visual Contrast Sensitivity of Cat 被引量:6
19
作者 华田苗 王振华 +1 位作者 徐金旺 刁建刚 《Zoological Research》 CAS CSCD 北大核心 2010年第2期155-162,共8页
Psychological studies on human subjects show that contrast detection learning promote learner's sensitivity to visual stimulus contrast. The underlying neural mechanisms remain unknown. In this study, three cats (Fe... Psychological studies on human subjects show that contrast detection learning promote learner's sensitivity to visual stimulus contrast. The underlying neural mechanisms remain unknown. In this study, three cats (Felis catus) were trained to perform monocularly a contrast detection task by two-altemative forced choice method. The perceptual ability of each cat improved remarkably with learning as indicated by a significantly increased contrast sensitivity to visual stimuli. The learning effect displayed an evident specificity to the eye employed for learning but could partially transfer to the naive eye, prompting the possibility that contrast detection learning might cause neural plasticity before and after the information from both eyes are merged in the visual pathway. Further, the contrast sensitivity improvement was evident basically around the spatial frequency (SF) used for learning, which suggested that contrast detection learning effect showed, to some extent, a SF specificity. This study indicates that cat exhibits a property of contrast detection learning similar to human subjects and can be used as an animal model for subsequent investigations on the neural correlates that mediate learning-induced contrast sensitivity improvement in humans. 展开更多
关键词 VISUAL Contrast detection LEARNING Contrast sensitivity CAT
下载PDF
OpenStreetMap辅助下的高分辨率光学影像道路损毁提取 被引量:1
20
作者 徐丰 董亮 蔡肖芋 《地理空间信息》 2016年第12期4-6,共3页
提出了一种以高分辨率遥感影像和OpenStreetMap道路矢量数据作为数据源的道路损毁提取方法。在OpenStreetMap道路矢量数据的辅助下,利用道路在高分辨率影像上的特征,结合学习-检测的方法对损毁区域进行检测,提取疑似损毁路段,基于道路... 提出了一种以高分辨率遥感影像和OpenStreetMap道路矢量数据作为数据源的道路损毁提取方法。在OpenStreetMap道路矢量数据的辅助下,利用道路在高分辨率影像上的特征,结合学习-检测的方法对损毁区域进行检测,提取疑似损毁路段,基于道路信息对损毁路段进行验证,剔除虚警。实验表明,该方法能够快速、准确地对道路损毁信息进行提取。 展开更多
关键词 高分辨率影像 OpenStreetMap 学习-检测 道路损毁提取
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部