Objective To elucidate the important functions of microRNAs (miRNAs) in regulating synaptic assembly and function, we performed a computational analysis for the genetic loci required for the synaptic structure and f...Objective To elucidate the important functions of microRNAs (miRNAs) in regulating synaptic assembly and function, we performed a computational analysis for the genetic loci required for the synaptic structure and function and their corresponding miRNAs in C. elegans. Methods Total 198 genetic loci required for the synaptic structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 163 genes among the 198 genetic loci selected have their possibly corresponding regulatory miRNA (s), which covered most of the important genetic loci required for the synaptic structure and function. Moreover, only 22 genes among the analyzed 38 genetic loci encoding synaptic proteins have more possibility to under the control of non-coding RNA genes. In addition, the distribution of miRNAs along the 3' untranslated region (UTR) of these 22 genes exhibits different patterns. Condusion Here we provide the computational screen and analysis results for the genetic loci required for synaptic structure and function and their possible corresponding miRNAs. These data will be useful for the further attempt to systematically determine the roles of miRNAs in synaptic assembly and function regulation in worms.展开更多
文摘Objective To elucidate the important functions of microRNAs (miRNAs) in regulating synaptic assembly and function, we performed a computational analysis for the genetic loci required for the synaptic structure and function and their corresponding miRNAs in C. elegans. Methods Total 198 genetic loci required for the synaptic structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 163 genes among the 198 genetic loci selected have their possibly corresponding regulatory miRNA (s), which covered most of the important genetic loci required for the synaptic structure and function. Moreover, only 22 genes among the analyzed 38 genetic loci encoding synaptic proteins have more possibility to under the control of non-coding RNA genes. In addition, the distribution of miRNAs along the 3' untranslated region (UTR) of these 22 genes exhibits different patterns. Condusion Here we provide the computational screen and analysis results for the genetic loci required for synaptic structure and function and their possible corresponding miRNAs. These data will be useful for the further attempt to systematically determine the roles of miRNAs in synaptic assembly and function regulation in worms.