The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties...The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.展开更多
Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and...Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.展开更多
The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied....The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied. The results show that the extraction rates of Fe, Cu and Zn from the slag reach 86.7%, 90.3% and 66.7% after adsorbed bacteria sterilize, while those with adsorbed bacteria are 91.9%, 96.0% and 84.5% in conditions of pulp density 2%, pH 1.0, temperature 65 °C and stirring rate 120 r/min, respectively. Some stretching peaks of functional groups from bacterial secretes on the bioleached residue surface, such as 1007 cm-1 and 1193 cm-1, turn up through FI-IR analysis and indirectly reveal the presence of the adsorbed bacteria on the slag particles surface. Besides, the corrosion of zinc smelting slag is enhanced by bacteria according to the characteristics of cyclic voltametry and Tafel curves in bioleaching system.展开更多
Surface morphology and inner structure of the dust were observed by ICP-AES, SEM-EDS and XRD to examine the strengthening measures of leaching potassium salt from the sintering dust by water. The results showed that t...Surface morphology and inner structure of the dust were observed by ICP-AES, SEM-EDS and XRD to examine the strengthening measures of leaching potassium salt from the sintering dust by water. The results showed that the main component of the sintering dust was iron-oxygen compound, with KCl adsorbed on its surface. Leaching experiments showed that the KCl in the ESP dust could be separated and recovered by water leaching and fractional crystallization. The yield of K-Na vaporized crystalline salt was 18.56%, in which the mass fractions of KCl, NaCl, CaSO4 and K2SO4 were about 61.21%, 13.40%, 14.62%and 10.86%, respectively. The leaching kinetics of potassium salt from the sintering dust fits the external diffusion model well. The leaching speed and the leaching rate of the potassium salt can be increased by increasing the leaching temperature, strengthening the stirring speed and increasing the liquid-solid ratio.展开更多
Kinetics of SiO2 leaching from Al2O3 extracted slag of fly ash with sodium hydroxide solution was studied.The effect of leaching temperature,mass ratio of NaOH to SiO2 and stirring speed on SiO2 leaching rate was inve...Kinetics of SiO2 leaching from Al2O3 extracted slag of fly ash with sodium hydroxide solution was studied.The effect of leaching temperature,mass ratio of NaOH to SiO2 and stirring speed on SiO2 leaching rate was investigated.The results show that increasing leaching temperature,mass ratio of NaOH to SiO2 and stirring speed increases SiO2 leaching rate.The SiO2 leaching rate is 95.66%under the optimized conditions.There are two stages for the SiO2 leaching process,and the leaching reaction is very rapid in the first stage but quite slow in the second stage.The whole leaching process follows the shrinking core model,and the outer diffusion of no product layer is the rate-controlling step.The activation energies of the first and second stages are calculated to be8.492 kJ/mol and 8.668 kJ/mol,respectively.The kinetic equations of the first and the second stages were obtained,respectively.展开更多
The leaching processes of zinc plant purification residue in sulfuric acid solution were investigated with respect to the effects of sulfuric acid concentration, reaction temperature, and particle size. A particle siz...The leaching processes of zinc plant purification residue in sulfuric acid solution were investigated with respect to the effects of sulfuric acid concentration, reaction temperature, and particle size. A particle size of 75?80 μm was required to leach 99.8%cobalt and 91.97%zinc at 70 °C for 20 min when the sulfuric acid concentration was 100 g/L and the ratio of liquid to solid was 50?1 (mL/g). The leaching kinetics of zinc plant purification residue in sulfuric acid solution system conformed well to the shrinking core model, and the dissolution rates of cobalt and zinc were found to be controlled by diffusion through a porous product layer. The apparent activation energy values of cobalt and zinc reaction were calculated to be 11.6931 kJ/mol and 6.6894 kJ/mol, respectively, according to the Arrhenius formula equation. The results show that diffusion through the inert particle pores is the leaching kinetics rate-controlling step.展开更多
Sulfuric acid leaching process was applied to extracting rare earth(RE) from roasted ore of Dechang bastnaesite in Sichuan,China.The effect of particle size,stirring speed,sulfuric acid concentration and leaching te...Sulfuric acid leaching process was applied to extracting rare earth(RE) from roasted ore of Dechang bastnaesite in Sichuan,China.The effect of particle size,stirring speed,sulfuric acid concentration and leaching temperature on RE extraction efficiency was investigated,and the leaching kinetics of RE was analyzed.Under selected leaching conditions,including particle size(0.074-0.100 mm),sulfuric acid concentration 1.50 mol/L,mass ratio of liquid to solid 8 and stirring speed 500 r/min,the leaching kinetics analysis shows that the reaction rate of leaching process is controlled by diffusion through the product/ash layer which can be described by the shrinking-core model,and the calculated activation energy of 9.977 kJ/mol is characteristic for a diffusion-controlled process.展开更多
The leaching kinetics of selenium from selenium-tellurium-rich materials in sodium sulfite solutions was studied. The morphologies of selenium-tellurium-rich materials are mainly spheroid and columnar bodies and the r...The leaching kinetics of selenium from selenium-tellurium-rich materials in sodium sulfite solutions was studied. The morphologies of selenium-tellurium-rich materials are mainly spheroid and columnar bodies and the range of particle size of selenium-tellurium-rich materials is between 17.77μm and 56.58μm, which contain 41.73%selenium and 40.96%tellurium. The ranges of experimental elements are 126-315 g/L of sodium sulfite concentration, 100-400 r/min of agitation speed, 23-95 ℃ of reaction temperature, 7:1-14:1 of liquid-solid ratio and 17.77-56.58μm of average particle size. The results show that the leaching rate increases with increasing the sodium sulfite concentration, agitation speed, reaction temperature or liquid-solid ratio and the leaching rate decreases with increasing the particle size. The reaction temperature has the significant effects on the selenium leaching rate which increases from 21%to 67%with increasing temperature from 23 ℃ to 95 ℃. The experimental data agree quite well with the Avrami model for leaching, with model parameter of 0.235 and apparent activation energy of 20.847 kJ/mol.展开更多
In order to examine the leaching rate of potassium chloride from the sintering dust by water,surface morphology and inner structure of the dust,especially the existing state of potassium chloride,were observed by scan...In order to examine the leaching rate of potassium chloride from the sintering dust by water,surface morphology and inner structure of the dust,especially the existing state of potassium chloride,were observed by scanning electron microscopy(SEM) and linear scanning technique via energy dispersive spectroscopy(EDS).The characterization shows that the sintering dusts are mostly porous composites or agglomerates of the fine dust particles with size less than 10 μm,and the potassium chloride and sodium chloride particles are partly covered by other water insoluble matters in the dust which consist of elements iron,calcium and etc.Exposure of potassium chloride in the agglomerated dust matrix of this kind suggests that the leaching can be simply perceived as the dissolution of water soluble matters in the dust.On-line monitor of specific electrical conductivity of the leaching system verifies the prediction that leaching kinetics of potassium chloride from the sintering dust fits dissolution model well.Leaching equilibrium can be reached within 5 min with potassium leaching ratio more than 95%.展开更多
The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, s...The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, stirring speed, initial concentration of sodium persulfate and sulfuric acid and particle size on the leaching rate were studied as well. The leaching kinetics of molybdenum, nickel and iron from metalliferous black shale shows that the leaching rate is controlled by a chemical reaction through a layer on the unreacted shrinking core. The leaching process follows the kinetics model 1-(1-a)^1/3=kt with apparent activation energies of 34.50, 43.14 and 71.79 kJ/mol for Mo, Ni and Fe, respectively. The reaction orders in sodium persulfate are 0.80, 1.01 and 0.75 for molybdenum, nickel and iron, respectively, while in sulfuric acid, these orders are 0.45, 0.75 and 0.50 for molybdenum, nickel and iron, respectively. In addition, the reaction mechanism for the dissolution of the metalliferous black shale was discussed.展开更多
The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm...The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm) and the concentration of ammonium chloride (3.5-5.5 mol/L) on leaching rate of zinc were studied. The results show that decreasing the particle size of zinc silicate and increasing the leaching temperature and concentration of ammonium chloride can obviously enhance the leaching rate of zinc. Among the kinetic models of the porous solids tested, the grain model with porous diffusion control can well describe the zinc leaching kinetics. The apparent activation energy of the leaching reaction is 161.26 kJ/mol and the reaction order with respect to ammonium chloride is 3.5.展开更多
The leaching kinetics of bastnaesite concentrate in HCl solution was investigated with respect to the effects of HCl concentration by changing HCl concentration,leaching temperature,liquid to solid ratio,and particle ...The leaching kinetics of bastnaesite concentrate in HCl solution was investigated with respect to the effects of HCl concentration by changing HCl concentration,leaching temperature,liquid to solid ratio,and particle size.A particle size of 25 μm was required to leach 89.6% RE2(CO3)3 and 1.5%REF3 at 90 ℃ for 90 min,when HCl concentration was 6 mol/L and liquid to solid ratio was 15:1.The leaching kinetics of bastnaesite concentrate is represented by shrinking core model with diffusion through a porous product layer.The activation energies for the dissolution reaction of RE2(CO3)3 and REF3 were calculated to be 59.39 kJ/mol and 66.13 kJ/mol respectively.展开更多
The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results...The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.展开更多
Effects of Zr addition on the microstructure, mechanical and electrochemical properties of Al-Mn-Si-Zn alloy were investigated. Transmission electron microscopy (TEM) observations reveal that, in as-annealled state,...Effects of Zr addition on the microstructure, mechanical and electrochemical properties of Al-Mn-Si-Zn alloy were investigated. Transmission electron microscopy (TEM) observations reveal that, in as-annealled state, the precipitates in the Zr-containing alloy are finer and more dispersive than those in the Zr-free alloy. Whereas, in simulated brazing state, a weaker precipitation is found in the Zr-containing alloy. Tensile testing results indicate that, with Zr additon, comprehensive mechanical properties of the as-annealed alloys could be significantly improved but weakened for the simulated brazing alloy. Electrochemical testing results reveal that, with Zr addition, the corrosion resistance of the as-annealed alloy decreases. However, after the simulated brazing treatment, such a negative effect of Zr element on the corrosion behavior of the alloy could be negligible.展开更多
The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calcul...The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.展开更多
Iron L-edge and sulfur K-edge X-ray absorption near edge structure(XANES) spectroscopy analysis of pyrite leached by extreme thermophilic Archaea strain Acidianus manzaensis(A.manzaensis) was carried out.Leaching ...Iron L-edge and sulfur K-edge X-ray absorption near edge structure(XANES) spectroscopy analysis of pyrite leached by extreme thermophilic Archaea strain Acidianus manzaensis(A.manzaensis) was carried out.Leaching experiments show that the oxidation of pyrite can be accelerated by A.manzaensis.Leaching results show that with the increase of leaching time,pH value in the leaching solution gradually decreases,redox potential increases rapidly from day 0 to day 3,and then increases slowly.The SEM results show that the pyrite surfaces are corroded gradually by A.manzaensis,and the XRD results show that the leaching residues contain new compositions of jarosite and elemental sulfur(S0).The iron L-edge XANES spectroscopy analysis of pyrite during biooxidation indicates that pyrite is gradually converted to Fe(III)-containing species.The sulfur K-edge XANES spectroscopy analysis indicates that elemental sulfur is produced during bioleaching and maintains mass fractions of 3.2%-5.9%.Sodium thiosulfate was also detected from day 2 to day 4,indicating the existence of thiosulfate during biooxidation of pyrite.展开更多
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative...Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.展开更多
The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentratio...The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.展开更多
The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating....The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating.Kissinger method and differentia isoconversional method were employed to assess the precipitation kinetic parameters of NZ30K-Mg alloy,activation energy Eα an pre-exponential factor A'α.The fraction of transformation(α) and the precipitation sequence in NZ30K-Mg alloy were determinec Continuous heating transformation(CHT) and isothermal heating transformation(IHT) diagrams were further obtained for guidin the aging of NZ30K-Mg alloy.The analysis shows that the precipitation kinetic parameters of NZ30K-Mg alloy can be obtaine accurately using isoconversional method.展开更多
Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics...Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.展开更多
基金the Tianjin Key Laboratory of Fastening and Connection Technology Enterprises 2022—2023,China(No.TKLF2022-02-C-02)the technical support from the School of Materials Science and Engineering,Central South University,China.
文摘The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.
基金Project(2011AA061001)supported by the Hi-Tech Research and Development Program of ChinaProject(50830301)supported by theKey Program of National Natural Science Foundation of ChinaProject(50925417)supported by the National Science Fund for Distinguished Young Scientists of China
文摘Chemical, physical, structural and morphological properties of zinc leaching residue were examined by the combination of various detection means such as AAS, XRF, XRD, M?ssbauer spectrometry, SEM-EDS, TG-DSC, XPS and FTIR. The toxicity characteristic leaching procedure (TCLP) was used to investigate the environmental activity of zinc leaching residue for a short contact time. The phase composition analysis indicated that the zinc leaching residue mainly consists of super refined flocculent particles including zinc ferrite, sulfate and silicate. The physical structural analysis showed that it has a thermal instability and strong water absorption properties. The results of TCLP indicated that the amounts of Zn and Cd in the leaching solution exceed 40 and 90 times of limit, respectively, which demonstrate that this residue is unstable in weak acidic environment for a short contact time.
基金Project (41271330) supported by the National Natural Science Foundation of China
文摘The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied. The results show that the extraction rates of Fe, Cu and Zn from the slag reach 86.7%, 90.3% and 66.7% after adsorbed bacteria sterilize, while those with adsorbed bacteria are 91.9%, 96.0% and 84.5% in conditions of pulp density 2%, pH 1.0, temperature 65 °C and stirring rate 120 r/min, respectively. Some stretching peaks of functional groups from bacterial secretes on the bioleached residue surface, such as 1007 cm-1 and 1193 cm-1, turn up through FI-IR analysis and indirectly reveal the presence of the adsorbed bacteria on the slag particles surface. Besides, the corrosion of zinc smelting slag is enhanced by bacteria according to the characteristics of cyclic voltametry and Tafel curves in bioleaching system.
基金Projects (2012AA062502,2012AA06A118) supported by the High-tech Research and Development Program of China
文摘Surface morphology and inner structure of the dust were observed by ICP-AES, SEM-EDS and XRD to examine the strengthening measures of leaching potassium salt from the sintering dust by water. The results showed that the main component of the sintering dust was iron-oxygen compound, with KCl adsorbed on its surface. Leaching experiments showed that the KCl in the ESP dust could be separated and recovered by water leaching and fractional crystallization. The yield of K-Na vaporized crystalline salt was 18.56%, in which the mass fractions of KCl, NaCl, CaSO4 and K2SO4 were about 61.21%, 13.40%, 14.62%and 10.86%, respectively. The leaching kinetics of potassium salt from the sintering dust fits the external diffusion model well. The leaching speed and the leaching rate of the potassium salt can be increased by increasing the leaching temperature, strengthening the stirring speed and increasing the liquid-solid ratio.
基金Project (2007CB613603) supported by the National Basic Research Program of ChinaProject (2013M530934) supported by the Postdoctoral Science Foundation of China
文摘Kinetics of SiO2 leaching from Al2O3 extracted slag of fly ash with sodium hydroxide solution was studied.The effect of leaching temperature,mass ratio of NaOH to SiO2 and stirring speed on SiO2 leaching rate was investigated.The results show that increasing leaching temperature,mass ratio of NaOH to SiO2 and stirring speed increases SiO2 leaching rate.The SiO2 leaching rate is 95.66%under the optimized conditions.There are two stages for the SiO2 leaching process,and the leaching reaction is very rapid in the first stage but quite slow in the second stage.The whole leaching process follows the shrinking core model,and the outer diffusion of no product layer is the rate-controlling step.The activation energies of the first and second stages are calculated to be8.492 kJ/mol and 8.668 kJ/mol,respectively.The kinetic equations of the first and the second stages were obtained,respectively.
基金Project(51072233)supported by the National Natural Science Foundation of China
文摘The leaching processes of zinc plant purification residue in sulfuric acid solution were investigated with respect to the effects of sulfuric acid concentration, reaction temperature, and particle size. A particle size of 75?80 μm was required to leach 99.8%cobalt and 91.97%zinc at 70 °C for 20 min when the sulfuric acid concentration was 100 g/L and the ratio of liquid to solid was 50?1 (mL/g). The leaching kinetics of zinc plant purification residue in sulfuric acid solution system conformed well to the shrinking core model, and the dissolution rates of cobalt and zinc were found to be controlled by diffusion through a porous product layer. The apparent activation energy values of cobalt and zinc reaction were calculated to be 11.6931 kJ/mol and 6.6894 kJ/mol, respectively, according to the Arrhenius formula equation. The results show that diffusion through the inert particle pores is the leaching kinetics rate-controlling step.
基金Project(NDRC high-tech No.606,2009) supported by the Major Industries Technological Development Special Fund of Development and Reform Commission,ChinaProject(50934004) supported by the National Natural Science Foundation of China
文摘Sulfuric acid leaching process was applied to extracting rare earth(RE) from roasted ore of Dechang bastnaesite in Sichuan,China.The effect of particle size,stirring speed,sulfuric acid concentration and leaching temperature on RE extraction efficiency was investigated,and the leaching kinetics of RE was analyzed.Under selected leaching conditions,including particle size(0.074-0.100 mm),sulfuric acid concentration 1.50 mol/L,mass ratio of liquid to solid 8 and stirring speed 500 r/min,the leaching kinetics analysis shows that the reaction rate of leaching process is controlled by diffusion through the product/ash layer which can be described by the shrinking-core model,and the calculated activation energy of 9.977 kJ/mol is characteristic for a diffusion-controlled process.
基金Project(2011B0508000033)supported by the Special Foundation of Guangdong Province Major Science&Technology Program of China
文摘The leaching kinetics of selenium from selenium-tellurium-rich materials in sodium sulfite solutions was studied. The morphologies of selenium-tellurium-rich materials are mainly spheroid and columnar bodies and the range of particle size of selenium-tellurium-rich materials is between 17.77μm and 56.58μm, which contain 41.73%selenium and 40.96%tellurium. The ranges of experimental elements are 126-315 g/L of sodium sulfite concentration, 100-400 r/min of agitation speed, 23-95 ℃ of reaction temperature, 7:1-14:1 of liquid-solid ratio and 17.77-56.58μm of average particle size. The results show that the leaching rate increases with increasing the sodium sulfite concentration, agitation speed, reaction temperature or liquid-solid ratio and the leaching rate decreases with increasing the particle size. The reaction temperature has the significant effects on the selenium leaching rate which increases from 21%to 67%with increasing temperature from 23 ℃ to 95 ℃. The experimental data agree quite well with the Avrami model for leaching, with model parameter of 0.235 and apparent activation energy of 20.847 kJ/mol.
基金Project (50974018) supported by the National Natural Science Foundation of China Project (108007) supported by the ScienceFoundation of Ministry of Education of China
文摘In order to examine the leaching rate of potassium chloride from the sintering dust by water,surface morphology and inner structure of the dust,especially the existing state of potassium chloride,were observed by scanning electron microscopy(SEM) and linear scanning technique via energy dispersive spectroscopy(EDS).The characterization shows that the sintering dusts are mostly porous composites or agglomerates of the fine dust particles with size less than 10 μm,and the potassium chloride and sodium chloride particles are partly covered by other water insoluble matters in the dust which consist of elements iron,calcium and etc.Exposure of potassium chloride in the agglomerated dust matrix of this kind suggests that the leaching can be simply perceived as the dissolution of water soluble matters in the dust.On-line monitor of specific electrical conductivity of the leaching system verifies the prediction that leaching kinetics of potassium chloride from the sintering dust fits dissolution model well.Leaching equilibrium can be reached within 5 min with potassium leaching ratio more than 95%.
基金Project(15A151)supported by the Key Research Projects of Education Department of Hunan Province,ChinaProject(2015JJ2115)supported by the Natural Science Fund Council of Hunan Province,China+1 种基金Project(JSU071308)supported by the Construct Program of the Key Discipline in Hunan Province,ChinaProject(APSTIRT02)supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, stirring speed, initial concentration of sodium persulfate and sulfuric acid and particle size on the leaching rate were studied as well. The leaching kinetics of molybdenum, nickel and iron from metalliferous black shale shows that the leaching rate is controlled by a chemical reaction through a layer on the unreacted shrinking core. The leaching process follows the kinetics model 1-(1-a)^1/3=kt with apparent activation energies of 34.50, 43.14 and 71.79 kJ/mol for Mo, Ni and Fe, respectively. The reaction orders in sodium persulfate are 0.80, 1.01 and 0.75 for molybdenum, nickel and iron, respectively, while in sulfuric acid, these orders are 0.45, 0.75 and 0.50 for molybdenum, nickel and iron, respectively. In addition, the reaction mechanism for the dissolution of the metalliferous black shale was discussed.
基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProject(51374254)supported by the National Natural Science Foundation of China
文摘The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm) and the concentration of ammonium chloride (3.5-5.5 mol/L) on leaching rate of zinc were studied. The results show that decreasing the particle size of zinc silicate and increasing the leaching temperature and concentration of ammonium chloride can obviously enhance the leaching rate of zinc. Among the kinetic models of the porous solids tested, the grain model with porous diffusion control can well describe the zinc leaching kinetics. The apparent activation energy of the leaching reaction is 161.26 kJ/mol and the reaction order with respect to ammonium chloride is 3.5.
基金Project(50974042)supported by the National Natural Science Foundation of ChinaProject(20090042120015)supported by Scientific Research Special Foundation of Doctor Subject of Chinese UniversitiesProject(N090302007)supported by the Fundamental Research Funds for the Central Universities,China
文摘The leaching kinetics of bastnaesite concentrate in HCl solution was investigated with respect to the effects of HCl concentration by changing HCl concentration,leaching temperature,liquid to solid ratio,and particle size.A particle size of 25 μm was required to leach 89.6% RE2(CO3)3 and 1.5%REF3 at 90 ℃ for 90 min,when HCl concentration was 6 mol/L and liquid to solid ratio was 15:1.The leaching kinetics of bastnaesite concentrate is represented by shrinking core model with diffusion through a porous product layer.The activation energies for the dissolution reaction of RE2(CO3)3 and REF3 were calculated to be 59.39 kJ/mol and 66.13 kJ/mol respectively.
基金Project(50975053) supported by the National Natural Science Foundation of China
文摘The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.
基金Proejct(51171108)supported by the National Natural Science Foundation of ChinaProject supported by Shanghai High-tech Development Project,China
文摘Effects of Zr addition on the microstructure, mechanical and electrochemical properties of Al-Mn-Si-Zn alloy were investigated. Transmission electron microscopy (TEM) observations reveal that, in as-annealled state, the precipitates in the Zr-containing alloy are finer and more dispersive than those in the Zr-free alloy. Whereas, in simulated brazing state, a weaker precipitation is found in the Zr-containing alloy. Tensile testing results indicate that, with Zr additon, comprehensive mechanical properties of the as-annealed alloys could be significantly improved but weakened for the simulated brazing alloy. Electrochemical testing results reveal that, with Zr addition, the corrosion resistance of the as-annealed alloy decreases. However, after the simulated brazing treatment, such a negative effect of Zr element on the corrosion behavior of the alloy could be negligible.
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The precipitation kinetics of 2519 A aluminum alloy after different cold rolling reductions before aging was investigated by hardness test and differential scanning calorimetry(DSC). The activation energy was calculated according to DSC curves using single heating rate method. The microstructures of as-rolled and peak-aged alloys were observed by transmission electron microscopy(TEM). The result shows that the age hardenability reduces and the activation energy rises with increasing the reduction from 7% to 40%. Nonuniform dislocations are found in as-rolled alloy and inhomogeneous distribution of θ′ phase is revealed in peak-aged alloy when the reduction is 15%. The inhomogeneous distribution of θ′ phase may be related to the age hardenability reducing and activation energy rising.
基金Project(51274257)supported by the National Natural Science Foundation of ChinaProject(U1232103)supported by the Joint Funds of National Natural Science Foundation of China and Large Scientific Facility Foundation of Chinese Academy of Sciences+1 种基金Project(CX2014B092)supported by the Hunan Provincial Innovation Foundation For Postgraduate,ChinaProject(VR-12419)supported by Beijing Synchrotron Radiation Facility Public User Program,China
文摘Iron L-edge and sulfur K-edge X-ray absorption near edge structure(XANES) spectroscopy analysis of pyrite leached by extreme thermophilic Archaea strain Acidianus manzaensis(A.manzaensis) was carried out.Leaching experiments show that the oxidation of pyrite can be accelerated by A.manzaensis.Leaching results show that with the increase of leaching time,pH value in the leaching solution gradually decreases,redox potential increases rapidly from day 0 to day 3,and then increases slowly.The SEM results show that the pyrite surfaces are corroded gradually by A.manzaensis,and the XRD results show that the leaching residues contain new compositions of jarosite and elemental sulfur(S0).The iron L-edge XANES spectroscopy analysis of pyrite during biooxidation indicates that pyrite is gradually converted to Fe(III)-containing species.The sulfur K-edge XANES spectroscopy analysis indicates that elemental sulfur is produced during bioleaching and maintains mass fractions of 3.2%-5.9%.Sodium thiosulfate was also detected from day 2 to day 4,indicating the existence of thiosulfate during biooxidation of pyrite.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.
基金Project(2007CB613601)supported by the National Basic Research Program of ChinaProject(10C1095)supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.
基金Project (2011ZX04014-052,2012ZX04012011) supported by CNC Machine Tools and Basic Manufacturing Equipment Technology Comments
文摘The electrical resistivity of NZ30K-Mg alloy was measured at different heating rates during continuous heating to stud the precipitation kinetics.Two kinds of metastable phases,β" and β',formed during the heating.Kissinger method and differentia isoconversional method were employed to assess the precipitation kinetic parameters of NZ30K-Mg alloy,activation energy Eα an pre-exponential factor A'α.The fraction of transformation(α) and the precipitation sequence in NZ30K-Mg alloy were determinec Continuous heating transformation(CHT) and isothermal heating transformation(IHT) diagrams were further obtained for guidin the aging of NZ30K-Mg alloy.The analysis shows that the precipitation kinetic parameters of NZ30K-Mg alloy can be obtaine accurately using isoconversional method.
基金Project(51474075)supported by the National Natural Science Foundation of China
文摘Gold bearing pyrite leaching was conducted in H2SO4-Fe2(SO4)3 system at different reaction temperatures,with different ferric ion concentrations,sulfuric acid concentrations and stirring speeds.The leaching kinetics and mechanism were studied.When the temperature ranged between 30-75 °C,the pyrite leaching was mainly controlled by chemical reaction with positive correlation to the ferric ion concentration.The activation energy obtained from Arrhenius empirical formula is 51.39 k J/mol.The EDS and XPS analyses suggest that the oxidation of sulfur within pyrite is through a series of intermediate stages,and eventually is oxidized to sulphate accompanied with the formation of element sulfur.This indicates a thiosulfate oxidation pathway of the gold bearing pyrite oxidation in H2SO4-Fe2(SO4)3 system.