期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
学分矩阵结构在完全学分制改革中的探索与应用——基于美国学历资格框架DQP的高职学分制教学实践 被引量:13
1
作者 殷明 何静 郑继昌 《当代职业教育》 2016年第6期91-94,共4页
学历资格框架(DQP)是美国新兴发展的高等教育改革工具,它基于五大学习领域学习成果建构而成,在美国高等院校得到较为广泛的应用实践。广东岭南职业技术学院自2014年起推行基于DQP体系的高职学分制教学改革,提出学分矩阵结构并应用于专... 学历资格框架(DQP)是美国新兴发展的高等教育改革工具,它基于五大学习领域学习成果建构而成,在美国高等院校得到较为广泛的应用实践。广东岭南职业技术学院自2014年起推行基于DQP体系的高职学分制教学改革,提出学分矩阵结构并应用于专业规范与课程规范,在高职课程体系的学分设置与评价方面产生了较大的成效,对进一步深化高职教育改革具有一定的借鉴作用。 展开更多
关键词 学分矩阵结构 DQP 高职教育 学分
下载PDF
Notes on Quantitative Structure-Properties Relationships (QSPR) Part Four: Quantum Multimolecular Polyhedra, Collective Vectors, Quantum Similarity, and Quantum QSPR Fundamental Equation
2
作者 Ramon Carbo-Dorca Silvia Gonzalez 《Management Studies》 2016年第1期33-47,共15页
The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be r... The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be reconstructed as a quantum multimolecular polyhedron (QMP), whose vertices are formed by each molecular DF. According to QQSPR theory, complicated kinds of molecular properties, like biological activity or toxicity, of molecular sets can be calculated via the quantum expectation value of an approximate Hermitian operator, which can be evaluated with the geometrical information contained in the attached QMP via quantum similarity matrices. Practical ways of solving the QQSPR problem from the point of view of QMP geometrical structure are provided. Such a development results into a powerful algorithm, which can be implemented within molecular design as an alternative to the current classical QSPR procedures. 展开更多
关键词 quantum similarity quantum multimolecular polyhedra (QMP) quantum QSPR (QQSPR) QQSPR fundamental equation QMP statistical-like collective functions QMP condensed collective indices classical QSPR-QSAR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部