The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron m...The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.展开更多
As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mecha...As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mechanical properties of the alloys were evaluated by OM,SEM/EDS,XRD,TEM,EBSD and tensile tests.The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation(PSN)effect and hinder the migration of dynamic recrystallization(DRX)grain boundary at an elevated temperature during ES.The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination(UTS of 396 MPa,YS of 313 MPa,andδ=20.3%)owing to strong grain boundary strengthening and improvement of Schmid factor for{0001}■basal slip.The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy.展开更多
The excellent energy storage performance of covalent sulfur-carbon material has gradually attracted great interest. However, in the electrochemical sodium storage process, the bond evolution mechanism remains an elusi...The excellent energy storage performance of covalent sulfur-carbon material has gradually attracted great interest. However, in the electrochemical sodium storage process, the bond evolution mechanism remains an elusive topic. Herein, we develop a one-step annealing strategy to achieve a high covalent sulfur-carbon bridged hybrid(HCSC)utilizing phenylphosphinic acid as the carbon-source/catalyst and sodium sulfate as the sulfur-precursor/salt template, in which the sulfur mainly exists in the forms of C–S–C and C–S–S–C. Notably, most of the bridge bonds are electrochemically cleaved when the cycling voltage is lower than0.6 V versus Na/Na+, leading to the appearance of two visible redox peaks in the following cyclic voltammogram(CV) tests.The in-situ and ex-situ characterizations demonstrate that S^2- is formed in the reduction process and the carbon skeleton is concomitantly and irreversibly isomerized. Thus, the cleaved sulfur and isomerized carbon could jointly contribute to the sodium storage in 0.01–3.0 V. In a Na-S battery system, the activated HCSC in cut off voltage window of 0.6–2.8 V achieves a high reversible capacity(770 mA h g^-1 at 300 mA g^-1). This insight reveals the charge storage mechanism of sulfur-carbon bridged hybrid and provides an improved enlightenment on the interfacial chemistry of electrode materials.展开更多
Models of the evolution of learning often assume that learning leads to the best solution to any task, and disregard the details of the learning and decision-making process along with its potential pitfalls. These mod...Models of the evolution of learning often assume that learning leads to the best solution to any task, and disregard the details of the learning and decision-making process along with its potential pitfalls. These models therefore do not explain in- stances in the animal behavior literature in which learning leads to maladaptive behaviors. In recent years a growing number of theoretical studies use explicit models of learning mechanisms, offering a fresh perspective on the issue by revealing the dynam- ics of information acquisition and biases arising from it. These models have pointed out possible learning rules and their adaptive value, and shown that the value of learning may crucially depend on such factors as the layout of the physical environment to be learned, the structure of the payoffs offered by different alternatives, the risk of failure, characteristics of the learner and social interactions. This review considers the merits of explicit modeling in studying the evolution of learning, describes the kinds of results that can only be obtained from this modeling approach, and outlines directions for future research .展开更多
基金Project (2016B090931004) supported by the Scientific and Research Plan of Guangdong Province, ChinaProject (51601229) supported by the National Natural Science Foundation of China。
文摘The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively.
基金Project(XLYC1807021)supported by Liaoning Revitalization Talents Program,ChinaProject(2019JH3/30100014)supported by Joint Research Fund of Lianning-Shenyang National Laboratory for Materials Science,China+2 种基金Project supported by Liaoning Bai Qian Wan Talents Program,ChinaProject(RC200414)supported by Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang City,ChinaProject(XLYC1908006)supported by High Level Innovation Team of Liaoning Province,China。
文摘As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mechanical properties of the alloys were evaluated by OM,SEM/EDS,XRD,TEM,EBSD and tensile tests.The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation(PSN)effect and hinder the migration of dynamic recrystallization(DRX)grain boundary at an elevated temperature during ES.The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination(UTS of 396 MPa,YS of 313 MPa,andδ=20.3%)owing to strong grain boundary strengthening and improvement of Schmid factor for{0001}■basal slip.The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy.
基金supported by the National Key Research and Development Program of China(2017YFB0102003 and2018YFB0104204)the National Natural Science Foundation of China(51622406,21673298 and 21473258)+2 种基金Young Elite Scientists Sponsorship Program By CAST(2017QNRC001)the Project of Innovation Driven Plan in Central South University(2017CX004 and 2018CX005)the Program for Innovative Team(in Science and Technology)in the University of Henan Province of China(17IRTSTHN003)
文摘The excellent energy storage performance of covalent sulfur-carbon material has gradually attracted great interest. However, in the electrochemical sodium storage process, the bond evolution mechanism remains an elusive topic. Herein, we develop a one-step annealing strategy to achieve a high covalent sulfur-carbon bridged hybrid(HCSC)utilizing phenylphosphinic acid as the carbon-source/catalyst and sodium sulfate as the sulfur-precursor/salt template, in which the sulfur mainly exists in the forms of C–S–C and C–S–S–C. Notably, most of the bridge bonds are electrochemically cleaved when the cycling voltage is lower than0.6 V versus Na/Na+, leading to the appearance of two visible redox peaks in the following cyclic voltammogram(CV) tests.The in-situ and ex-situ characterizations demonstrate that S^2- is formed in the reduction process and the carbon skeleton is concomitantly and irreversibly isomerized. Thus, the cleaved sulfur and isomerized carbon could jointly contribute to the sodium storage in 0.01–3.0 V. In a Na-S battery system, the activated HCSC in cut off voltage window of 0.6–2.8 V achieves a high reversible capacity(770 mA h g^-1 at 300 mA g^-1). This insight reveals the charge storage mechanism of sulfur-carbon bridged hybrid and provides an improved enlightenment on the interfacial chemistry of electrode materials.
文摘Models of the evolution of learning often assume that learning leads to the best solution to any task, and disregard the details of the learning and decision-making process along with its potential pitfalls. These models therefore do not explain in- stances in the animal behavior literature in which learning leads to maladaptive behaviors. In recent years a growing number of theoretical studies use explicit models of learning mechanisms, offering a fresh perspective on the issue by revealing the dynam- ics of information acquisition and biases arising from it. These models have pointed out possible learning rules and their adaptive value, and shown that the value of learning may crucially depend on such factors as the layout of the physical environment to be learned, the structure of the payoffs offered by different alternatives, the risk of failure, characteristics of the learner and social interactions. This review considers the merits of explicit modeling in studying the evolution of learning, describes the kinds of results that can only be obtained from this modeling approach, and outlines directions for future research .