期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
高校学生信息目录管理系统的设计与实现
1
作者 逯文晖 《西藏教育》 2011年第10期51-54,共4页
针对各高校学生信息存储分布异构特性,提出了异构环境下高校学生信息资源管理的设计方案。设计LDAP学生信息模型来存储学生信息,采用两层目录服务器组织方式,结合Web访问与JNDI技术,实现了高校学生信息目录管理系统CS—DMS。在该系统中... 针对各高校学生信息存储分布异构特性,提出了异构环境下高校学生信息资源管理的设计方案。设计LDAP学生信息模型来存储学生信息,采用两层目录服务器组织方式,结合Web访问与JNDI技术,实现了高校学生信息目录管理系统CS—DMS。在该系统中,用户可通过Web统一接口方便高效的查询和管理各系学生信息,实现底层资源共享。 展开更多
关键词 轻型目录访问协议 学生信息模型 Java命名与目录接口 目录服务
下载PDF
UML建模在高职学生信息管理系统中的应用
2
作者 魏松 贺丹娜 《计算机光盘软件与应用》 2012年第15期20-21,共2页
统一建模语言UML是当今世界最有效的面向对象的可视化建模工具。使用UML建模对软件的开发、系统的解释,在高职院校学生信息管理系统中具有重要的现实意义。可以在开发周期初期,及时的检测到错误,改变系统模型,使软件开发周期更直观。
关键词 UML 统一建模语言 学生信息管理系统:模型
下载PDF
基于J2EE的个性化网络学习系统构建研究
3
作者 吴洲 曹伟 《微型电脑应用》 2014年第4期9-10,共2页
介绍了一个具有自适应学习能力的个性化网络学习系统。分析了系统的主要功能和模型结构,并针对系统中的学生信息模型、自适应学习模型和学习诊断模型,进行了详细的工作流程设计。以便更好地实现网络学习资源的动态组织和网络学习过程的... 介绍了一个具有自适应学习能力的个性化网络学习系统。分析了系统的主要功能和模型结构,并针对系统中的学生信息模型、自适应学习模型和学习诊断模型,进行了详细的工作流程设计。以便更好地实现网络学习资源的动态组织和网络学习过程的自适应导航。 展开更多
关键词 自适应学习机制 网络学习系统 学生信息模型 自适应学习模型 错误诊断模型
下载PDF
Visualizing Patterns of Genetic Landscapes and Species Distribution of Taxus wallichiana(Taxaceae),Based on GIS and Ecological Niche Models 被引量:7
4
作者 于海彬 张镱锂 +1 位作者 高俊刚 祁威 《Journal of Resources and Ecology》 CSCD 2014年第3期193-202,共10页
The Chinese yew(Taxus wallichiana),which is widely distributed in the Himalayas and in southern China,is now on the edge of extinction.In order to understand the evolutionary processes that control the current diver... The Chinese yew(Taxus wallichiana),which is widely distributed in the Himalayas and in southern China,is now on the edge of extinction.In order to understand the evolutionary processes that control the current diversity within this species at the genetic and ecological levels,its genetic patterns and range dynamics must first be identified and mapped.This knowledge can then be applied in the development of an effective conservation strategy.Based on molecular data obtained from 48 populations of T.wallichiana,we used GIS-based interpolation approach for the explicit visualization of patterns of genetic divergence and diversity,and a number of potential evolutionary hotspots have been specifically identified within the genetic landscape maps.Within the maps of genetic divergence and diversity,five areas of high inter-population genetic divergence and six areas of high intra-population genetic diversity have been highlighted in a number of separate mountain regions,and these evolutionary hotspots should have the priority to be protected.Furthermore,four geographical barriers have been identified: the eastern Himalayas,the Yunnan Plateau,the Hengduan Mountains and the Taiwan Strait.According to ecological niche modeling(ENM),the populations of T.wallichiana within the Sino-Himalayan Forest floristic subkingdom experienced westward expansion from the periods of Last Inter-glacial to Last Glacial Maximum(LGM).Following the LGM,the distribution range overall became reduced and fragmented.These findings challenge the classic mode of contraction-expansion in response to the last glaciation.In conclusion,our findings suggest that the changes in geographical landscapes and climate that occurred during the Quaternary resulted in current genetic landscape patterns. 展开更多
关键词 genetic landscape PHYLOGEOGRAPHY GIS Ecological Niche Models(ENMs) HIMALAYAS
原文传递
A generative model of identifying informative proteins from dynamic PPI networks 被引量:2
5
作者 ZHANG Yuan CHENG Yue +1 位作者 JIA KeBin ZHANG AiDong 《Science China(Life Sciences)》 SCIE CAS 2014年第11期1080-1089,共10页
Informative proteins are the proteins that play critical functional roles inside cells.They are the fundamental knowledge of translating bioinformatics into clinical practices.Many methods of identifying informative b... Informative proteins are the proteins that play critical functional roles inside cells.They are the fundamental knowledge of translating bioinformatics into clinical practices.Many methods of identifying informative biomarkers have been developed which are heuristic and arbitrary,without considering the dynamics characteristics of biological processes.In this paper,we present a generative model of identifying the informative proteins by systematically analyzing the topological variety of dynamic protein-protein interaction networks(PPINs).In this model,the common representation of multiple PPINs is learned using a deep feature generation model,based on which the original PPINs are rebuilt and the reconstruction errors are analyzed to locate the informative proteins.Experiments were implemented on data of yeast cell cycles and different prostate cancer stages.We analyze the effectiveness of reconstruction by comparing different methods,and the ranking results of informative proteins were also compared with the results from the baseline methods.Our method is able to reveal the critical members in the dynamic progresses which can be further studied to testify the possibilities for biomarker research. 展开更多
关键词 dynamic protein-protein interaction network abnormal detection multi-view data deep belief network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部