The new generation of DCC catalysts, the DMMC/RMMC series catalysts developed by RIPP are introduced in this paper. The large molecule cracking ability is enhanced by increasing the portion of large pores; and the cok...The new generation of DCC catalysts, the DMMC/RMMC series catalysts developed by RIPP are introduced in this paper. The large molecule cracking ability is enhanced by increasing the portion of large pores; and the coke selectivity is improved by adjusting the acidity site density on the matrix surface, while the selective cracking reactions are increased. The sphericity of catalysts is improved by adopting new preparation method. The commercial application results have shown that applying DMMC/RMMC series catalysts with the mixed VGO, VGO plus AR, and hydrotreated VGO feed can increase the propylene yield by 2.43, 1.3 and 0.8 percentage points, respectively, as compared to the previous catalysts along with improvement in some products yields. The refining enterprises can make more profits after applying new series of DCC catalysts.展开更多
Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and ap...Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application requirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR performance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.展开更多
The 3rd generation catalytic cracking naphtha selective hydrodesulfurization(RSDS-III) technology developed by RIPP included the catalysts selective adjusting(RSAT) technology, the development of new catalysts and opt...The 3rd generation catalytic cracking naphtha selective hydrodesulfurization(RSDS-III) technology developed by RIPP included the catalysts selective adjusting(RSAT) technology, the development of new catalysts and optimized process conditions. The pilot plant test results showed that the RSDS-III technology could be adapted to different feedstocks. The sulfur content dropped from 600 μg/g and 631 μg/g to 7 μg/g and 9 μg/g, respectively, by RSDS-III technology when feed A and feed B were processed to meet China national V gasoline standard, with the RON loss of products equating to 0.9 units and 1.0 unit, respectively. While the feed C with a medium sulfur content was processed according to the full-range naphtha hydrotreating technology, the sulfur content dropped from 357 μg/g in the feed to 10 μg/g in gasoline, with the RON loss of product decreased by only 0.6 units. Thanks to the high HDS activity and good selectivity of RSDS-III technology, the ultra-low-sulfur gasoline meeting China V standard could be produced by the RSDS-III technology with little RON loss.展开更多
文摘The new generation of DCC catalysts, the DMMC/RMMC series catalysts developed by RIPP are introduced in this paper. The large molecule cracking ability is enhanced by increasing the portion of large pores; and the coke selectivity is improved by adjusting the acidity site density on the matrix surface, while the selective cracking reactions are increased. The sphericity of catalysts is improved by adopting new preparation method. The commercial application results have shown that applying DMMC/RMMC series catalysts with the mixed VGO, VGO plus AR, and hydrotreated VGO feed can increase the propylene yield by 2.43, 1.3 and 0.8 percentage points, respectively, as compared to the previous catalysts along with improvement in some products yields. The refining enterprises can make more profits after applying new series of DCC catalysts.
文摘Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application requirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR performance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.
基金the financial support from the SINOPEC(No.114016)
文摘The 3rd generation catalytic cracking naphtha selective hydrodesulfurization(RSDS-III) technology developed by RIPP included the catalysts selective adjusting(RSAT) technology, the development of new catalysts and optimized process conditions. The pilot plant test results showed that the RSDS-III technology could be adapted to different feedstocks. The sulfur content dropped from 600 μg/g and 631 μg/g to 7 μg/g and 9 μg/g, respectively, by RSDS-III technology when feed A and feed B were processed to meet China national V gasoline standard, with the RON loss of products equating to 0.9 units and 1.0 unit, respectively. While the feed C with a medium sulfur content was processed according to the full-range naphtha hydrotreating technology, the sulfur content dropped from 357 μg/g in the feed to 10 μg/g in gasoline, with the RON loss of product decreased by only 0.6 units. Thanks to the high HDS activity and good selectivity of RSDS-III technology, the ultra-low-sulfur gasoline meeting China V standard could be produced by the RSDS-III technology with little RON loss.