In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,part...In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,partial molar property functions,derivative functions with respect to composition,general equation of relationship between partial and average molar properties of components,difference equation and constraining equation of different values between partial and average molar properties,as well as general Gibbs-Duhem formula were derived.It was proved that the partial molar properties calculated from various combinative functions of average molar properties of alloys are equal,but in general,the partial molar properties are not equal to the average molar properties of a given component.This means that the partial molar properties cannot represent the corresponding properties of the component.All the equations and functions established in this work were proved to be correct by calculating the results of partial and average atomic volumes of components as well as average atomic volumes of alloys in the Au-Ni system.展开更多
Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is ...Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.展开更多
In this work, author evaluated past theories and perspectives behind the definitions of science and/or branches of science. Also some of the philosophers of science and their specific philosophical interests were expr...In this work, author evaluated past theories and perspectives behind the definitions of science and/or branches of science. Also some of the philosophers of science and their specific philosophical interests were expressed. Author considered some type of interactions between some disciplines to determine, to solve the philosophical/scientific problems and to define the possible solutions. The purposes of this article are: (i) to define new synthesis method, (ii) to define new perspective for the philosophy of science, (iii) to define relation between new philosophy perspective and philosophy of science, (iv) to define and organize name, number, relations, and correct structure between special science branches and philosophy of science, (v) to define necessary and sufficient number of branches for philosophy of science, (vi) to define and express the importance and place of new philosophy of science perspective in the new system, (vii) to extend the definition/limits of philosophy of science, (viii) to re-define meanings of some philosophical/scientific theories, (ix) to define systematic solution for the conflicts, problems, confusions about philosophy of science, sciences and branches of science, (x) to define new branches of science, (xi) to re-construct branches and hierarchy of science, (xii) to define new theories about science and branches of science. Author considered R-Synthesis as a method for the evaluation oftbe philosophy, philosophy of science, sciences and branches of science. This R-Synthesis includes evaluation of eight categories of general/specific perspective, 21-dimensions, and 12 general subjects (with related scope and contents) for the past 12,000 years. It is a kind of synthesis of science and non-science, physical science and non-physical science, religious science and non-religious science, and others. In this article, author defined 27 possible definitive/certain result cases for this new synthesis. Author defined the possible formation stages shortly to express new disciplines, new constructional and/or complementary theories. These theories are considered to define 21 major effective disciplines. New philosophy perspective is defined (R-Philosophy) shortly. New perspective and sub branches are defined for the philosophy of science. Major sciences are defined due to new basic philosophies. 42-basic components are defined for each science branch. New and/or re-constructed sciences, branches of science, basic sciences, and new hierarchy of science are defined with figure. Electromagnetic sciences, information sciences, and system sciences are defined specifically. Hybrid Sciences, New Era Science, and Ideal Scientific System are defined with general/specific figure. Relation between the some old branches and new branches of science was expressed generally due to new perspective of philosophy of science.展开更多
AIM: To explore the syndrome differentiation in traditional Chinese medicine (TCM) and gene protein expression in gastric carcinoma METHODS: Preoperative data of gastric cancer cases were collected from the Genera...AIM: To explore the syndrome differentiation in traditional Chinese medicine (TCM) and gene protein expression in gastric carcinoma METHODS: Preoperative data of gastric cancer cases were collected from the General Surgery Department and classified according to the criteria for syndrome differentiation in TCM. E-cadherin (E-cad) and ICAM-1 gene protein expressions were detected in postoperative specimens from these cases by the immunohistochemical EnVision two-step method. RESULTS: The E-cad positive expression rate was 90% in 100 cases of gastric carcinoma. The difference in E-cad expression was significant between the different syndrome differentiation types in TCM (P 〈 0.01). Further group-group comparison showed that there was a significant difference in E-cad expression between the stagnation of phlegm-damp type and the deficiency in both qi and blood and the deficiency-cold of stomach and spleen types, where E-cad expression was high. There was no significant difference between the internal obstruction of stagnant toxin type and the in-coordination between liver and stomach type, where E-cad expression was relatively low. The ICAM-1 positive expression rate was 58%, and there was no statistically significant difference between the two groups (x^2= 8.999, P 〉 0.05). CONCLUSION: E-cad expression is relatively low in the internal obstruction of stagnant toxin type and the incoordination between liver and stomach type, where tumor development and metastasis may be associated with low E-cad expression, or with low homogeneous adhesiveness between tumor cells.展开更多
Global research progress on coastal flooding was studied using a bibliometric evaluation of publications listed in the Web of Science extended scientific citation index. There was substantial growth in coastal floodin...Global research progress on coastal flooding was studied using a bibliometric evaluation of publications listed in the Web of Science extended scientific citation index. There was substantial growth in coastal flooding research output, with increasing publications, a higher collaboration index, and more references during the 1995–2016 period. The USA has taken a dominant position in coastal flooding research, with the US Geological Survey leading the publications ranking. Research collaborations at institutional scales have become more important than those at global scales. International collaborative publications consistently drew more citations than those from a single country. Furthermore, coastal flooding research included combinations of multi-disciplinary categories, including ‘Geology' and ‘Environmental Sciences & Ecology'. The most important coastal flooding research sites were wetlands and estuaries. While numerical modeling and 3 S(Remote sensing, RS; Geography information systems, GIS; Global positioning systems, GPS) technology were the most commonly used methods for studying coastal flooding, Lidar gained in popularity. The vulnerability and adaptation of coastal environments, their resilience after flooding, and ecosystem services function showed increases in interest.展开更多
In this paper,it is pointed out that the descriptions of alloy phase structures are dependent on structural unit sequence.In the systematic science of alloys(SSA),the alloy phase structures are described by means of t...In this paper,it is pointed out that the descriptions of alloy phase structures are dependent on structural unit sequence.In the systematic science of alloys(SSA),the alloy phase structures are described by means of the symmetry element sequence combining with characteristic atom sequence.It is named the characteristic atom arranging structure,which can display the characteristic atoms at the lattice sites and the micro-inhomogeneity,besides the symmetry.Each characteristic atom has its own characters:neighboring configuration,potential energy,volume and electronic structure.The micro-inhomogeneity of alloy phases can be described by concentrations and short-range ordered parameters of characteristic atoms.The differences between the electronic structures of alloy phases and electronic structures of characteristic atoms in the alloy phases are also discussed.展开更多
This paper discusses the strong consistency of M estimator of regression parameter in linear model for negatively associated samples. As a result, the author extends Theorem 1 and Theorem 2 of Shanchao YANG (2002) t...This paper discusses the strong consistency of M estimator of regression parameter in linear model for negatively associated samples. As a result, the author extends Theorem 1 and Theorem 2 of Shanchao YANG (2002) to the NA errors without necessarily imposing any extra condition.展开更多
We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for pra...We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for practicing Earth system science. Watershed science is an Earth system science practiced on a watershed scale, and it has developed rapidly over the previous two decades. The goal of watershed science is to understand and predict the behavior of complex watershed systems and support the sustainable development of watersheds. However, watershed science confronts the difficulties of understanding complex systems, achieving scale transformation, and simulating the co-evolution of the human-nature system. These difficulties are fundamentally methodological challenges. Therefore, we discuss the research methods of watershed science, which include the self-organized complex system method, the upscaling method dominated by statistical mechanics, Darwinian approaches based on selection and evolutionary principles, hydro-economic and eco-economic methods that emphasize the human-nature system co-evolution, and meta-synthesis for addressing unstructured problems. These approaches together can create a bridge between holism and reductionism and work as a group of operational methods to combine hard and soft integrations and capture all aspects of both natural and human systems. These methods will contribute to the maturation of watershed science and to a methodology that can be used throughout land-surface systems science.展开更多
基金Project (51071181) supported by the National Natural Science Foundation of ChinaProject (2010FJ4034) supported by Natural Science Foundation of Hunan Province,China
文摘In the framework of systematic science of alloys,the average molar property(volume and potential energy) functions of disordered alloys were established.From these functions,the average molar property functions,partial molar property functions,derivative functions with respect to composition,general equation of relationship between partial and average molar properties of components,difference equation and constraining equation of different values between partial and average molar properties,as well as general Gibbs-Duhem formula were derived.It was proved that the partial molar properties calculated from various combinative functions of average molar properties of alloys are equal,but in general,the partial molar properties are not equal to the average molar properties of a given component.This means that the partial molar properties cannot represent the corresponding properties of the component.All the equations and functions established in this work were proved to be correct by calculating the results of partial and average atomic volumes of components as well as average atomic volumes of alloys in the Au-Ni system.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.
文摘In this work, author evaluated past theories and perspectives behind the definitions of science and/or branches of science. Also some of the philosophers of science and their specific philosophical interests were expressed. Author considered some type of interactions between some disciplines to determine, to solve the philosophical/scientific problems and to define the possible solutions. The purposes of this article are: (i) to define new synthesis method, (ii) to define new perspective for the philosophy of science, (iii) to define relation between new philosophy perspective and philosophy of science, (iv) to define and organize name, number, relations, and correct structure between special science branches and philosophy of science, (v) to define necessary and sufficient number of branches for philosophy of science, (vi) to define and express the importance and place of new philosophy of science perspective in the new system, (vii) to extend the definition/limits of philosophy of science, (viii) to re-define meanings of some philosophical/scientific theories, (ix) to define systematic solution for the conflicts, problems, confusions about philosophy of science, sciences and branches of science, (x) to define new branches of science, (xi) to re-construct branches and hierarchy of science, (xii) to define new theories about science and branches of science. Author considered R-Synthesis as a method for the evaluation oftbe philosophy, philosophy of science, sciences and branches of science. This R-Synthesis includes evaluation of eight categories of general/specific perspective, 21-dimensions, and 12 general subjects (with related scope and contents) for the past 12,000 years. It is a kind of synthesis of science and non-science, physical science and non-physical science, religious science and non-religious science, and others. In this article, author defined 27 possible definitive/certain result cases for this new synthesis. Author defined the possible formation stages shortly to express new disciplines, new constructional and/or complementary theories. These theories are considered to define 21 major effective disciplines. New philosophy perspective is defined (R-Philosophy) shortly. New perspective and sub branches are defined for the philosophy of science. Major sciences are defined due to new basic philosophies. 42-basic components are defined for each science branch. New and/or re-constructed sciences, branches of science, basic sciences, and new hierarchy of science are defined with figure. Electromagnetic sciences, information sciences, and system sciences are defined specifically. Hybrid Sciences, New Era Science, and Ideal Scientific System are defined with general/specific figure. Relation between the some old branches and new branches of science was expressed generally due to new perspective of philosophy of science.
基金Supported by the National Natural Science Foundation of China,No. 30271626
文摘AIM: To explore the syndrome differentiation in traditional Chinese medicine (TCM) and gene protein expression in gastric carcinoma METHODS: Preoperative data of gastric cancer cases were collected from the General Surgery Department and classified according to the criteria for syndrome differentiation in TCM. E-cadherin (E-cad) and ICAM-1 gene protein expressions were detected in postoperative specimens from these cases by the immunohistochemical EnVision two-step method. RESULTS: The E-cad positive expression rate was 90% in 100 cases of gastric carcinoma. The difference in E-cad expression was significant between the different syndrome differentiation types in TCM (P 〈 0.01). Further group-group comparison showed that there was a significant difference in E-cad expression between the stagnation of phlegm-damp type and the deficiency in both qi and blood and the deficiency-cold of stomach and spleen types, where E-cad expression was high. There was no significant difference between the internal obstruction of stagnant toxin type and the in-coordination between liver and stomach type, where E-cad expression was relatively low. The ICAM-1 positive expression rate was 58%, and there was no statistically significant difference between the two groups (x^2= 8.999, P 〉 0.05). CONCLUSION: E-cad expression is relatively low in the internal obstruction of stagnant toxin type and the incoordination between liver and stomach type, where tumor development and metastasis may be associated with low E-cad expression, or with low homogeneous adhesiveness between tumor cells.
基金Under the auspices of National Natural Science Foundation of China(No.41571018)
文摘Global research progress on coastal flooding was studied using a bibliometric evaluation of publications listed in the Web of Science extended scientific citation index. There was substantial growth in coastal flooding research output, with increasing publications, a higher collaboration index, and more references during the 1995–2016 period. The USA has taken a dominant position in coastal flooding research, with the US Geological Survey leading the publications ranking. Research collaborations at institutional scales have become more important than those at global scales. International collaborative publications consistently drew more citations than those from a single country. Furthermore, coastal flooding research included combinations of multi-disciplinary categories, including ‘Geology' and ‘Environmental Sciences & Ecology'. The most important coastal flooding research sites were wetlands and estuaries. While numerical modeling and 3 S(Remote sensing, RS; Geography information systems, GIS; Global positioning systems, GPS) technology were the most commonly used methods for studying coastal flooding, Lidar gained in popularity. The vulnerability and adaptation of coastal environments, their resilience after flooding, and ecosystem services function showed increases in interest.
基金supported by the National Natural Science Foundation of China (Grant No 51071181)the National Nature Science Foundation of Hunan Province (Grant No 2010FJ4034)
文摘In this paper,it is pointed out that the descriptions of alloy phase structures are dependent on structural unit sequence.In the systematic science of alloys(SSA),the alloy phase structures are described by means of the symmetry element sequence combining with characteristic atom sequence.It is named the characteristic atom arranging structure,which can display the characteristic atoms at the lattice sites and the micro-inhomogeneity,besides the symmetry.Each characteristic atom has its own characters:neighboring configuration,potential energy,volume and electronic structure.The micro-inhomogeneity of alloy phases can be described by concentrations and short-range ordered parameters of characteristic atoms.The differences between the electronic structures of alloy phases and electronic structures of characteristic atoms in the alloy phases are also discussed.
基金The research is supported by National Natural Science Foundation of China(No.10661006)the Support Program for 100 Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institutions([2005]64),and Guangxi Science Foundation(0447096)
文摘This paper discusses the strong consistency of M estimator of regression parameter in linear model for negatively associated samples. As a result, the author extends Theorem 1 and Theorem 2 of Shanchao YANG (2002) to the NA errors without necessarily imposing any extra condition.
基金supported by Prof.Chen Fahurepresented by this paper was funded by the Major Research Plan of the National Natural Science Foundation of China(Grant Nos.91225302,91425303)the Cross-disciplinary Collaborative Teams Program for Science,Technology,and Innovation of the Chinese Academy of Sciences
文摘We discuss the concepts, research methods, and infrastructure of watershed science. A watershed is a basic unit and possesses all of the complexities of the land surface system, thereby making it the best unit for practicing Earth system science. Watershed science is an Earth system science practiced on a watershed scale, and it has developed rapidly over the previous two decades. The goal of watershed science is to understand and predict the behavior of complex watershed systems and support the sustainable development of watersheds. However, watershed science confronts the difficulties of understanding complex systems, achieving scale transformation, and simulating the co-evolution of the human-nature system. These difficulties are fundamentally methodological challenges. Therefore, we discuss the research methods of watershed science, which include the self-organized complex system method, the upscaling method dominated by statistical mechanics, Darwinian approaches based on selection and evolutionary principles, hydro-economic and eco-economic methods that emphasize the human-nature system co-evolution, and meta-synthesis for addressing unstructured problems. These approaches together can create a bridge between holism and reductionism and work as a group of operational methods to combine hard and soft integrations and capture all aspects of both natural and human systems. These methods will contribute to the maturation of watershed science and to a methodology that can be used throughout land-surface systems science.